{"title":"Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster","authors":"Alexander Bors, Michael Giudici, C. Praeger","doi":"10.1090/memo/1427","DOIUrl":null,"url":null,"abstract":"<p>For a finite group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we denote by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega (G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>A</mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Aut(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-orbits on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the number of distinct element orders in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper, we are primarily concerned with the two quantities <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German d left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis minus o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">d</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {d}(G)≔\\omega (G)-o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German q left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis slash o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {q}(G)≔\\omega (G)/o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, each of which may be viewed as a measure for how far <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is from being an AT-group in the sense of Zhang (that is, a group with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega left-parenthesis upper G right-parenthesis equals o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega (G)=o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). We show that the index <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper G colon upper R a d left-parenthesis upper G right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|G:Rad(G)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the soluble radical <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R a d left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Rad(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be bounded from above both by a function in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German d left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">d</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {d}(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and by a function in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German q left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {q}(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o left-parenthesis upper R a d left-parenthesis upper G right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">o(Rad(G))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
For a finite group GG, we denote by ω(G)\omega (G) the number of Aut(G)Aut(G)-orbits on GG, and by o(G)o(G) the number of distinct element orders in GG. In this paper, we are primarily concerned with the two quantities d(G)≔ω(G)−o(G)\mathfrak {d}(G)≔\omega (G)-o(G) and q(G)≔ω(G)/o(G)\mathfrak {q}(G)≔\omega (G)/o(G), each of which may be viewed as a measure for how far GG is from being an AT-group in the sense of Zhang (that is, a group with ω(G)=o(G)\omega (G)=o(G)). We show that the index |G:Rad(G)||G:Rad(G)| of the soluble radical Rad(G)Rad(G) of GG can be bounded from above both by a function in d(G)\mathfrak {d}(G) and by a function in q(G)\mathfrak {q}(G) and o(Rad(G))o(Rad(G)). We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group MM.
对于有限群G G,我们用ω(G)\omega(G)表示G G上a u t(G)Aut(G。在本文中,我们主要关注两个量d(G)ω(G)−o(G)\mathfrak{d}(G)≔\omega(G)-o(G)和q(G)(G) ,它们中的每一个都可以被视为G离张意义上的AT群(即ω(G)=o(G)\ω(G。我们证明了G的可溶性自由基R a d(G)Rad(G)的指数|G:R a dq(G)\mathfrak{q}(G)和o(R a d(G))o(Rad(G)。我们还获得了Fischer Griess Monster群M M的一个奇怪的定量刻画。