M. Pillai
求助PDF
{"title":"能量临界波映射方程的无限时间爆破解","authors":"M. Pillai","doi":"10.1090/memo/1407","DOIUrl":null,"url":null,"abstract":"<p>We consider the wave maps problem with domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 2 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and target <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with polar angle equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>arctan</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{1}(r) = 2 \\arctan (r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }(r) = Q_{1}(r \\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> family. More precisely, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>100</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _{0,0,b} \\in C^{\\infty }([100,\\infty ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying, for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{l}, C_{m,k}>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\">\n <mml:semantics>\n <mml:mrow>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:msup>\n <mml:mi>log</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mfrac>\n ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation\",\"authors\":\"M. Pillai\",\"doi\":\"10.1090/memo/1407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the wave maps problem with domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript 2 plus 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{2+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and target <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper S squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">S</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {S}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper S squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">S</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {S}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, with polar angle equal to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>arctan</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{1}(r) = 2 \\\\arctan (r)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }(r) = Q_{1}(r \\\\lambda )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> family. More precisely, for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>b</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">b>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and for all <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>100</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _{0,0,b} \\\\in C^{\\\\infty }([100,\\\\infty ))</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> satisfying, for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>m</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>k</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{l}, C_{m,k}>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>log</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mfrac>\\n \",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
引用
批量引用