能量临界波映射方程的无限时间爆破解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Pillai
{"title":"能量临界波映射方程的无限时间爆破解","authors":"M. Pillai","doi":"10.1090/memo/1407","DOIUrl":null,"url":null,"abstract":"<p>We consider the wave maps problem with domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 2 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and target <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with polar angle equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>arctan</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{1}(r) = 2 \\arctan (r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }(r) = Q_{1}(r \\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> family. More precisely, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>100</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _{0,0,b} \\in C^{\\infty }([100,\\infty ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying, for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{l}, C_{m,k}>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\">\n <mml:semantics>\n <mml:mrow>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:msup>\n <mml:mi>log</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mfrac>\n ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation\",\"authors\":\"M. Pillai\",\"doi\":\"10.1090/memo/1407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the wave maps problem with domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript 2 plus 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{2+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and target <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper S squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">S</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {S}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper S squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">S</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {S}^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, with polar angle equal to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>arctan</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{1}(r) = 2 \\\\arctan (r)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }(r) = Q_{1}(r \\\\lambda )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q Subscript lamda\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>Q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q_{\\\\lambda }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> family. More precisely, for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>b</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">b>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and for all <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>100</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _{0,0,b} \\\\in C^{\\\\infty }([100,\\\\infty ))</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> satisfying, for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>m</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>k</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{l}, C_{m,k}>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>log</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mfrac>\\n \",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑了域R2+1\mathbb{R}^{2+1}和目标S2\mathbb{S}^{2}在1-等变拓扑度1设置中的波映射问题。在这种情况下,我们记得孤立子是从R2\mathbb{R}^{2}到S2\mathbb{S}^}的调和映射,极角等于Q 1(R)=2 arctan⁡ (r)Q_{1}(r)=2\arctan(r)。通过应用方程的标度对称性,Qλ(r)=Q 1(rλ)Q_,和所有这样的QλQ_{\lambda}的族是有限能量、1-等变拓扑一阶映射中调和映射能量的唯一极小值。在这项工作中,我们构造了沿QλQ_{\lambda}族的无限时间爆破解。更精确地说,对于b>0 b>0,以及对于所有λ0,0,b∈C∞([100,∞))\λ_{0,0,b}\在C^{\infty}([100>0,C l日志b⁡ (t)≤λ0,0,b(t)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation

We consider the wave maps problem with domain R 2 + 1 \mathbb {R}^{2+1} and target S 2 \mathbb {S}^{2} in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from R 2 \mathbb {R}^{2} to S 2 \mathbb {S}^{2} , with polar angle equal to Q 1 ( r ) = 2 arctan ( r ) Q_{1}(r) = 2 \arctan (r) . By applying the scaling symmetry of the equation, Q λ ( r ) = Q 1 ( r λ ) Q_{\lambda }(r) = Q_{1}(r \lambda ) is also a harmonic map, and the family of all such Q λ Q_{\lambda } are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the Q λ Q_{\lambda } family. More precisely, for b > 0 b>0 , and for all λ 0 , 0 , b C ( [ 100 , ) ) \lambda _{0,0,b} \in C^{\infty }([100,\infty )) satisfying, for some C l , C m , k > 0 C_{l}, C_{m,k}>0 , C l log b ( t ) λ 0 , 0 , b ( t )

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信