Flat Rank Two Vector Bundles on Genus Two Curves

IF 2 4区 数学 Q1 MATHEMATICS
Viktoria Heu, F. Loray
{"title":"Flat Rank Two Vector Bundles on Genus Two\n Curves","authors":"Viktoria Heu, F. Loray","doi":"10.1090/MEMO/1247","DOIUrl":null,"url":null,"abstract":"We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of under- lying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2 case, connections as above are invariant under the hyperelliptic involution : they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allow us to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical (16, 6)-configuration of the Kummer surface. We also recover a Poincare family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by vanGeemen-Previato. We explicitly describe the isomonodromic foliation in the moduli space of vector bundles with sl(2,C)-connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"23 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/MEMO/1247","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of under- lying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2 case, connections as above are invariant under the hyperelliptic involution : they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allow us to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical (16, 6)-configuration of the Kummer surface. We also recover a Poincare family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by vanGeemen-Previato. We explicitly describe the isomonodromic foliation in the moduli space of vector bundles with sl(2,C)-connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
两属曲线上的平秩两向量束
研究了2属曲线上无迹不可约的2秩连接的模空间,以及指向下面向量束(包括不稳定束)模空间的遗忘映射,并计算了一个自然拉格朗日有理截面。作为2属情况的一个特殊性,上述连接在超椭圆对合下是不变的:它们在黎曼球上下降为2阶对数连接。我们用Narasimhan-Ramanan, Tyurin和Bertram的经典方法建立了著名的下抛物束模空间之间的显式联系。这使我们能够在考虑的模空间中解释一定数量的几何现象,例如Kummer曲面的经典(16,6)构型。我们还在Narasimhan-Ramanan模空间的2度覆盖上恢复了由于Bolognesi的庞加莱族。我们显式地计算了希格斯束模空间上的希钦可积系统,并将希钦哈密顿量与vanGeemen-Previato的哈密顿量进行了比较。在2属曲线上用sl(2,C)连接明确地描述了向量束模空间中的等同叶理,并证明了不稳定束轨迹诱导流的横向性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信