{"title":"Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume","authors":"R. Bruggeman, A. Pohl","doi":"10.1090/memo/1423","DOIUrl":"https://doi.org/10.1090/memo/1423","url":null,"abstract":"We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume and the dynamics of their geodesic flows.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42665184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability","authors":"Kihyun Kim, Soonsik Kwon","doi":"10.1090/memo/1409","DOIUrl":"https://doi.org/10.1090/memo/1409","url":null,"abstract":"<p>We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-critical NLS. In this work, we consider pseudoconformal blow-up solutions under <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\u0000 <mml:semantics>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-equivariance, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mgeq 1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\u0000 <mml:semantics>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with given asymptotic profile <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">z^{ast }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>: <disp-formula content-type=\"math/mathml\">\u0000[\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket u left-parenthesis t comma r right-parenthesis minus StartFraction 1 Over StartAbsoluteValue t EndAbsoluteValue EndFraction upper Q left-parenthesis StartFraction r Over StartAbsoluteValue t EndAbsoluteValue EndFraction right-parenthesis e Supe","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47513575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-dimensional empirical measures, order\u0000 statistics, and Kantorovich transport\u0000 distances","authors":"S. Bobkov, M. Ledoux","doi":"10.1090/memo/1259","DOIUrl":"https://doi.org/10.1090/memo/1259","url":null,"abstract":"This work is devoted to the study of rates of convergence of the empirical measures μn = 1 n ∑n k=1 δXk , n ≥ 1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn, μ)) or [ E(W p p (μn, μ)) ]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1 √ n to slower rates, and both lower and upperbounds on E(Wp(μn, μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, logconcavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73427125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}