Memoirs of the American Mathematical Society最新文献

筛选
英文 中文
Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume 无限协体积Hecke三角群的转移算子特征函数与自同构形式
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-09-25 DOI: 10.1090/memo/1423
R. Bruggeman, A. Pohl
{"title":"Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume","authors":"R. Bruggeman, A. Pohl","doi":"10.1090/memo/1423","DOIUrl":"https://doi.org/10.1090/memo/1423","url":null,"abstract":"We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume and the dynamics of their geodesic flows.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42665184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability 自对偶Chern-Simons-Schrödinger方程的伪共形Blow-Up解:存在性、唯一性和不稳定性
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-09-03 DOI: 10.1090/memo/1409
Kihyun Kim, Soonsik Kwon
{"title":"On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability","authors":"Kihyun Kim, Soonsik Kwon","doi":"10.1090/memo/1409","DOIUrl":"https://doi.org/10.1090/memo/1409","url":null,"abstract":"<p>We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-critical NLS. In this work, we consider pseudoconformal blow-up solutions under <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\u0000 <mml:semantics>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-equivariance, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mgeq 1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\u0000 <mml:semantics>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with given asymptotic profile <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">z^{ast }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>: <disp-formula content-type=\"math/mathml\">\u0000[\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket u left-parenthesis t comma r right-parenthesis minus StartFraction 1 Over StartAbsoluteValue t EndAbsoluteValue EndFraction upper Q left-parenthesis StartFraction r Over StartAbsoluteValue t EndAbsoluteValue EndFraction right-parenthesis e Supe","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47513575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
One-dimensional empirical measures, order statistics, and Kantorovich transport distances 一维经验测度,序统计量和坎托罗维奇输运距离
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-09-01 DOI: 10.1090/memo/1259
S. Bobkov, M. Ledoux
{"title":"One-dimensional empirical measures, order\u0000 statistics, and Kantorovich transport\u0000 distances","authors":"S. Bobkov, M. Ledoux","doi":"10.1090/memo/1259","DOIUrl":"https://doi.org/10.1090/memo/1259","url":null,"abstract":"This work is devoted to the study of rates of convergence of the empirical measures μn = 1 n ∑n k=1 δXk , n ≥ 1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn, μ)) or [ E(W p p (μn, μ)) ]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1 √ n to slower rates, and both lower and upperbounds on E(Wp(μn, μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, logconcavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73427125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 221
Quiver Grassmannians of Extended Dynkin type 𝐷 Part 1: Schubert Systems and Decompositions Into Affine Spaces 扩展Dynkin型的Quiver Grassmannians𝐷第1部分:Schubert系统及其在仿射空间中的分解
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-09-01 DOI: 10.1090/memo/1258
Oliver Lorscheid, Thorsten Weist
{"title":"Quiver Grassmannians of Extended Dynkin type\u0000 𝐷 Part 1: Schubert Systems and Decompositions Into\u0000 Affine Spaces","authors":"Oliver Lorscheid, Thorsten Weist","doi":"10.1090/memo/1258","DOIUrl":"https://doi.org/10.1090/memo/1258","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72877915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Proper Equivariant Stable Homotopy Theory 固有等变稳定同伦理论
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-08-02 DOI: 10.1090/memo/1432
D. Degrijse, M. Hausmann, W. Luck, Irakli Patchkoria, S. Schwede
{"title":"Proper Equivariant Stable Homotopy Theory","authors":"D. Degrijse, M. Hausmann, W. Luck, Irakli Patchkoria, S. Schwede","doi":"10.1090/memo/1432","DOIUrl":"https://doi.org/10.1090/memo/1432","url":null,"abstract":"This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates that the theory comes with appropriate transfers and Wirthmüller isomorphisms, and the resulting equivariant cohomology theories support the analog of an \u0000\u0000 \u0000 \u0000 R\u0000 O\u0000 (\u0000 G\u0000 )\u0000 \u0000 R O(G)\u0000 \u0000\u0000-grading.\u0000\u0000Our model for genuine proper \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-equivariant stable homotopy theory is the category of orthogonal \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000. This class of \u0000\u0000 \u0000 \u0000 π\u0000 ∗\u0000 \u0000 pi _*\u0000 \u0000\u0000-isomorphisms is part of a symmetric monoidal stable model structure, and the associated tensor triangulated homotopy category is compactly generated. Consequently, every orthogonal \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-spectrum represents an equivariant cohomology theory on the category of \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-spaces. These represented cohomology theories are designed to only depend on the ‘proper \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-homotopy type’, tested by fixed points under all compact subgroups.\u0000\u0000An important special case of our theory are infinite discrete groups. For these, our genuine equivariant theory is related to finiteness properties in the sense of geometric group theory; for example, the \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-sphere spectrum is a compact object in our triangulated equivariant homotopy category if the universal space for proper \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-actions has a finite \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-CW-model. For discrete groups, the represented equivariant cohomology theories on finite proper \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-CW-complexes admit a more explicit description in terms of parameterized equivariant homotopy theory, suitably stabilized by \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-vector bundles. Via this description, we can identify the previously defined \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-cohomology theories of equivariant stable cohomotopy and equivariant K-theory as cohomology theories represented by specific orthogonal \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-spectra.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47408720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Moufang Loops and Groups with Triality are Essentially the Same Thing 具有三角性的模方圈和群本质上是一回事
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-07-01 DOI: 10.1090/MEMO/1252
J. Hall
{"title":"Moufang Loops and Groups with Triality are\u0000 Essentially the Same Thing","authors":"J. Hall","doi":"10.1090/MEMO/1252","DOIUrl":"https://doi.org/10.1090/MEMO/1252","url":null,"abstract":"In 1925 Elie Cartan introduced the principal of triality specifically for the Lie groups of type D4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title was made by Stephen Doro in 1978 who was in turn motivated by work of George Glauberman from 1968. Here we make the statement precise in a categorical context. In fact the most obvious categories of Moufang loops and groups with triality are not equivalent, hence the need for the word “essentially.” Received by the editor 20 June 2016. 2010 Mathematics Subject Classification. Primary 20.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76861766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Algebraic Geometry over 𝐶^{∞}-rings 代数几何上的{∞}-环
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-07-01 DOI: 10.1090/MEMO/1256
D. joyce
{"title":"Algebraic Geometry over 𝐶^{∞}-rings","authors":"D. joyce","doi":"10.1090/MEMO/1256","DOIUrl":"https://doi.org/10.1090/MEMO/1256","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83640972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation 能量临界波映射方程的无限时间爆破解
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-05-01 DOI: 10.1090/memo/1407
M. Pillai
{"title":"Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation","authors":"M. Pillai","doi":"10.1090/memo/1407","DOIUrl":"https://doi.org/10.1090/memo/1407","url":null,"abstract":"<p>We consider the wave maps problem with domain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 2 plus 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^{2+1}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and target <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">S</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {S}^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">S</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {S}^{2}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, with polar angle equal to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>Q</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>arctan</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <m","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44738486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Flat Rank Two Vector Bundles on Genus Two Curves 两属曲线上的平秩两向量束
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-05-01 DOI: 10.1090/MEMO/1247
Viktoria Heu, F. Loray
{"title":"Flat Rank Two Vector Bundles on Genus Two\u0000 Curves","authors":"Viktoria Heu, F. Loray","doi":"10.1090/MEMO/1247","DOIUrl":"https://doi.org/10.1090/MEMO/1247","url":null,"abstract":"We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of under- lying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2 case, connections as above are invariant under the hyperelliptic involution : they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allow us to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical (16, 6)-configuration of the Kummer surface. We also recover a Poincare family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by vanGeemen-Previato. We explicitly describe the isomonodromic foliation in the moduli space of vector bundles with sl(2,C)-connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90068584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance 布朗运动的时间变化:poincar<e:1>不等式,热核估计和原距离
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2019-05-01 DOI: 10.1090/MEMO/1250
Jun Kigami
{"title":"Time Changes of the Brownian Motion: Poincaré\u0000 Inequality, Heat Kernel Estimate and\u0000 Protodistance","authors":"Jun Kigami","doi":"10.1090/MEMO/1250","DOIUrl":"https://doi.org/10.1090/MEMO/1250","url":null,"abstract":"In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0, 1] are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0, 1], density of the medium is homogeneous and represented by the Lebesgue measure. Our study includes densities which are singular to the homogeneous one. We establish a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such as Liouville measures on [0, 1] and self-similar measures. We are going to show the existence of time changed process and associated jointly continuous heat kernel for this class of measures. Furthermore, we obtain diagonal lower and upper estimates of the heat kernel as time tends to 0. In particular, to express the principal part of the lower diagonal heat kernel estimate, we introduce “protodistance” associated with the density as a substitute of ordinary metric. If the density has the volume doubling property with respect to the Euclidean metric, the protodistance is shown to produce metrics under which upper off-diagonal subGaussian heat kernel estimate and lower near diagonal heat kernel estimate will be shown. 2010 Mathematics Subject Classification. Primary , 31E05, 60J35, 60J60; Secondary 28A80, 30L10, 43A99, 60J65, 80A20.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75760331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信