Multiplicity and Stability of the Pohozaev Obstruction for Hardy-Schrödinger Equations with Boundary Singularity

IF 2 4区 数学 Q1 MATHEMATICS
N. Ghoussoub, Saikat Mazumdar, F. Robert
{"title":"Multiplicity and Stability of the Pohozaev Obstruction for Hardy-Schrödinger Equations with Boundary Singularity","authors":"N. Ghoussoub, Saikat Mazumdar, F. Robert","doi":"10.1090/memo/1415","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a smooth bounded domain in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 element-of partial-differential normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0\\in \\partial \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We consider issues of non-existence, existence, and multiplicity of variational solutions in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript 1 comma 0 Superscript 2 Baseline left-parenthesis normal upper Omega right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H_{1,0}^2(\\Omega )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the borderline Dirichlet problem, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u minus gamma StartFraction u Over StartAbsoluteValue x EndAbsoluteValue squared EndFraction minus h left-parenthesis x right-parenthesis u 2nd Column a m p semicolon equals 3rd Column a m p semicolon StartFraction StartAbsoluteValue u EndAbsoluteValue Superscript 2 Super Superscript star Superscript left-parenthesis s right-parenthesis minus 2 Baseline u Over StartAbsoluteValue x EndAbsoluteValue Superscript s Baseline EndFraction 4th Column a m p semicolon in normal upper Omega comma 2nd Row 1st Column u 2nd Column a m p semicolon equals 3rd Column a m p semicolon 0 4th Column a m p semicolon on partial-differential normal upper Omega minus StartSet 0 EndSet comma EndLayout\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left left left\" rowspacing=\"4pt\" columnspacing=\"1em\">\n <mml:mtr>\n <mml:mtd>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mfrac>\n <mml:mi>u</mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mtext> </mml:mtext>\n <mml:mtext> </mml:mtext>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>in </mml:mtext>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd columnalign=\"right\">\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>on </mml:mtext>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\left \\{ \\begin {array}{llll} -\\Delta u-\\gamma \\frac {u}{|x|^2}- h(x) u &=& \\frac {|u|^{2^\\star (s)-2}u}{|x|^s} \\ \\ &\\text {in } \\Omega ,\\\\ \\hfill u&=&0 &\\text {on }\\partial \\Omega \\setminus \\{ 0 \\} , \\end{array} \\right . \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than s greater-than 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>s>2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript star Baseline left-parenthesis s right-parenthesis colon-equal StartFraction 2 left-parenthesis n minus s right-parenthesis Over n minus 2 EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mo>≔</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n <mml:annotation ","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Let Ω \Omega be a smooth bounded domain in R n \mathbb {R}^n ( n 3 n\geq 3 ) such that 0 Ω 0\in \partial \Omega . We consider issues of non-existence, existence, and multiplicity of variational solutions in H 1 , 0 2 ( Ω ) H_{1,0}^2(\Omega ) for the borderline Dirichlet problem, { Δ u γ u | x | 2 h ( x ) u a m p ; = a m p ; | u | 2 ( s ) 2 u | x | s     a m p ; in  Ω , u a m p ; = a m p ; 0 a m p ; on  Ω { 0 } , \begin{equation*} \left \{ \begin {array}{llll} -\Delta u-\gamma \frac {u}{|x|^2}- h(x) u &=& \frac {|u|^{2^\star (s)-2}u}{|x|^s} \ \ &\text {in } \Omega ,\\ \hfill u&=&0 &\text {on }\partial \Omega \setminus \{ 0 \} , \end{array} \right . \end{equation*} where 0 > s > 2 0>s>2 , 2 ( s ) 2 ( n s ) n 2

具有边界奇异性的Hardy-Schrödinger方程的Pohozaev阻塞的多重性和稳定性
让Ω\欧米茄be a smooth bounded域名in R n \ mathbb {R) ^ n ( n≥3 \ geq 3)这样的那个 0∈∂Ω0 \中\部分欧米茄。我们认为non-existence、存在的问题和multiplicity variational的解决方案在 H 1 , 0 2 ( Ω ) H_{1.0) ^ 2(\ω)》有点像Dirichlet问题,{ − Δ u − γ u | x | 2 − h ( x ) u a m p ;= m m p;| u | 2 ⋆ ( s ) − 2 u | x| s     a m p ;在   Ω , u a m p ;= m m p;零a m p;在   ∂ Ω ∖ { 0 } , \ 开始{equation *的左派\{\开始{}{llll阵}-三角洲u u -伽马\ frac {} {x | | - h (x) ^ 2的u & = & \ frac {| | u ^{2 ^ \星(s) - x的u} {| | \ & ^ s的短信{进来的,我是俄梅戛\ \ \ hfill u& = &0 & \短信上{}部分\ \ setminus \{0},我是俄梅戛end{阵列的\ coming right。\ end {equation *的地方 0 > s > 2 0 > s > , 2 ⋆ ( s ) ≔ 2 ( n − s ) n − 2 < mml: annotation
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信