Multiplicity and Stability of the Pohozaev Obstruction for Hardy-Schrödinger Equations with Boundary Singularity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
N. Ghoussoub, Saikat Mazumdar, F. Robert
{"title":"Multiplicity and Stability of the Pohozaev Obstruction for Hardy-Schrödinger Equations with Boundary Singularity","authors":"N. Ghoussoub, Saikat Mazumdar, F. Robert","doi":"10.1090/memo/1415","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a smooth bounded domain in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 element-of partial-differential normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0\\in \\partial \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We consider issues of non-existence, existence, and multiplicity of variational solutions in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript 1 comma 0 Superscript 2 Baseline left-parenthesis normal upper Omega right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H_{1,0}^2(\\Omega )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the borderline Dirichlet problem, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u minus gamma StartFraction u Over StartAbsoluteValue x EndAbsoluteValue squared EndFraction minus h left-parenthesis x right-parenthesis u 2nd Column a m p semicolon equals 3rd Column a m p semicolon StartFraction StartAbsoluteValue u EndAbsoluteValue Superscript 2 Super Superscript star Superscript left-parenthesis s right-parenthesis minus 2 Baseline u Over StartAbsoluteValue x EndAbsoluteValue Superscript s Baseline EndFraction 4th Column a m p semicolon in normal upper Omega comma 2nd Row 1st Column u 2nd Column a m p semicolon equals 3rd Column a m p semicolon 0 4th Column a m p semicolon on partial-differential normal upper Omega minus StartSet 0 EndSet comma EndLayout\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left left left\" rowspacing=\"4pt\" columnspacing=\"1em\">\n <mml:mtr>\n <mml:mtd>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mfrac>\n <mml:mi>u</mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mtext> </mml:mtext>\n <mml:mtext> </mml:mtext>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>in </mml:mtext>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd columnalign=\"right\">\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>on </mml:mtext>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\left \\{ \\begin {array}{llll} -\\Delta u-\\gamma \\frac {u}{|x|^2}- h(x) u &=& \\frac {|u|^{2^\\star (s)-2}u}{|x|^s} \\ \\ &\\text {in } \\Omega ,\\\\ \\hfill u&=&0 &\\text {on }\\partial \\Omega \\setminus \\{ 0 \\} , \\end{array} \\right . \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than s greater-than 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>s>2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript star Baseline left-parenthesis s right-parenthesis colon-equal StartFraction 2 left-parenthesis n minus s right-parenthesis Over n minus 2 EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mo>≔</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n <mml:annotation ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

Let Ω \Omega be a smooth bounded domain in R n \mathbb {R}^n ( n 3 n\geq 3 ) such that 0 Ω 0\in \partial \Omega . We consider issues of non-existence, existence, and multiplicity of variational solutions in H 1 , 0 2 ( Ω ) H_{1,0}^2(\Omega ) for the borderline Dirichlet problem, { Δ u γ u | x | 2 h ( x ) u a m p ; = a m p ; | u | 2 ( s ) 2 u | x | s     a m p ; in  Ω , u a m p ; = a m p ; 0 a m p ; on  Ω { 0 } , \begin{equation*} \left \{ \begin {array}{llll} -\Delta u-\gamma \frac {u}{|x|^2}- h(x) u &=& \frac {|u|^{2^\star (s)-2}u}{|x|^s} \ \ &\text {in } \Omega ,\\ \hfill u&=&0 &\text {on }\partial \Omega \setminus \{ 0 \} , \end{array} \right . \end{equation*} where 0 > s > 2 0>s>2 , 2 ( s ) 2 ( n s ) n 2

具有边界奇异性的Hardy-Schrödinger方程的Pohozaev阻塞的多重性和稳定性
让Ω\欧米茄be a smooth bounded域名in R n \ mathbb {R) ^ n ( n≥3 \ geq 3)这样的那个 0∈∂Ω0 \中\部分欧米茄。我们认为non-existence、存在的问题和multiplicity variational的解决方案在 H 1 , 0 2 ( Ω ) H_{1.0) ^ 2(\ω)》有点像Dirichlet问题,{ − Δ u − γ u | x | 2 − h ( x ) u a m p ;= m m p;| u | 2 ⋆ ( s ) − 2 u | x| s     a m p ;在   Ω , u a m p ;= m m p;零a m p;在   ∂ Ω ∖ { 0 } , \ 开始{equation *的左派\{\开始{}{llll阵}-三角洲u u -伽马\ frac {} {x | | - h (x) ^ 2的u & = & \ frac {| | u ^{2 ^ \星(s) - x的u} {| | \ & ^ s的短信{进来的,我是俄梅戛\ \ \ hfill u& = &0 & \短信上{}部分\ \ setminus \{0},我是俄梅戛end{阵列的\ coming right。\ end {equation *的地方 0 > s > 2 0 > s > , 2 ⋆ ( s ) ≔ 2 ( n − s ) n − 2 < mml: annotation
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信