N. Ghoussoub, Saikat Mazumdar, F. Robert
求助PDF
{"title":"Multiplicity and Stability of the Pohozaev Obstruction for Hardy-Schrödinger Equations with Boundary Singularity","authors":"N. Ghoussoub, Saikat Mazumdar, F. Robert","doi":"10.1090/memo/1415","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a smooth bounded domain in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 element-of partial-differential normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0\\in \\partial \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We consider issues of non-existence, existence, and multiplicity of variational solutions in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript 1 comma 0 Superscript 2 Baseline left-parenthesis normal upper Omega right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H_{1,0}^2(\\Omega )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the borderline Dirichlet problem, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout Enlarged left-brace 1st Row 1st Column minus normal upper Delta u minus gamma StartFraction u Over StartAbsoluteValue x EndAbsoluteValue squared EndFraction minus h left-parenthesis x right-parenthesis u 2nd Column a m p semicolon equals 3rd Column a m p semicolon StartFraction StartAbsoluteValue u EndAbsoluteValue Superscript 2 Super Superscript star Superscript left-parenthesis s right-parenthesis minus 2 Baseline u Over StartAbsoluteValue x EndAbsoluteValue Superscript s Baseline EndFraction 4th Column a m p semicolon in normal upper Omega comma 2nd Row 1st Column u 2nd Column a m p semicolon equals 3rd Column a m p semicolon 0 4th Column a m p semicolon on partial-differential normal upper Omega minus StartSet 0 EndSet comma EndLayout\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left left left\" rowspacing=\"4pt\" columnspacing=\"1em\">\n <mml:mtr>\n <mml:mtd>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mfrac>\n <mml:mi>u</mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mtext> </mml:mtext>\n <mml:mtext> </mml:mtext>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>in </mml:mtext>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd columnalign=\"right\">\n <mml:mi>u</mml:mi>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mo>=</mml:mo>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mtd>\n <mml:mtd>\n <mml:mi>a</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mtext>on </mml:mtext>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\left \\{ \\begin {array}{llll} -\\Delta u-\\gamma \\frac {u}{|x|^2}- h(x) u &=& \\frac {|u|^{2^\\star (s)-2}u}{|x|^s} \\ \\ &\\text {in } \\Omega ,\\\\ \\hfill u&=&0 &\\text {on }\\partial \\Omega \\setminus \\{ 0 \\} , \\end{array} \\right . \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than s greater-than 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>s>2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript star Baseline left-parenthesis s right-parenthesis colon-equal StartFraction 2 left-parenthesis n minus s right-parenthesis Over n minus 2 EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mo>≔</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n <mml:annotation ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
引用
批量引用
Abstract
Let
Ω
\Omega
be a smooth bounded domain in
R
n
\mathbb {R}^n
(
n
≥
3
n\geq 3
) such that
0
∈
∂
Ω
0\in \partial \Omega
. We consider issues of non-existence, existence, and multiplicity of variational solutions in
H
1
,
0
2
(
Ω
)
H_{1,0}^2(\Omega )
for the borderline Dirichlet problem,
{
−
Δ
u
−
γ
u
|
x
|
2
−
h
(
x
)
u
a
m
p
;
=
a
m
p
;
|
u
|
2
⋆
(
s
)
−
2
u
|
x
|
s
a
m
p
;
in
Ω
,
u
a
m
p
;
=
a
m
p
;
0
a
m
p
;
on
∂
Ω
∖
{
0
}
,
\begin{equation*} \left \{ \begin {array}{llll} -\Delta u-\gamma \frac {u}{|x|^2}- h(x) u &=& \frac {|u|^{2^\star (s)-2}u}{|x|^s} \ \ &\text {in } \Omega ,\\ \hfill u&=&0 &\text {on }\partial \Omega \setminus \{ 0 \} , \end{array} \right . \end{equation*}
where
0
>
s
>
2
0>s>2
,
2
⋆
(
s
)
≔
2
(
n
−
s
)
n
−
2
具有边界奇异性的Hardy-Schrödinger方程的Pohozaev阻塞的多重性和稳定性
让Ω\欧米茄be a smooth bounded域名in R n \ mathbb {R) ^ n ( n≥3 \ geq 3)这样的那个 0∈∂Ω0 \中\部分欧米茄。我们认为non-existence、存在的问题和multiplicity variational的解决方案在 H 1 , 0 2 ( Ω ) H_{1.0) ^ 2(\ω)》有点像Dirichlet问题,{ − Δ u − γ u | x | 2 − h ( x ) u a m p ;= m m p;| u | 2 ⋆ ( s ) − 2 u | x| s a m p ;在 Ω , u a m p ;= m m p;零a m p;在 ∂ Ω ∖ { 0 } , \ 开始{equation *的左派\{\开始{}{llll阵}-三角洲u u -伽马\ frac {} {x | | - h (x) ^ 2的u & = & \ frac {| | u ^{2 ^ \星(s) - x的u} {| | \ & ^ s的短信{进来的,我是俄梅戛\ \ \ hfill u& = &0 & \短信上{}部分\ \ setminus \{0},我是俄梅戛end{阵列的\ coming right。\ end {equation *的地方 0 > s > 2 0 > s > , 2 ⋆ ( s ) ≔ 2 ( n − s ) n − 2 < mml: annotation
本文章由计算机程序翻译,如有差异,请以英文原文为准。