Sebastian Casalaina-Martin, S. Grushevsky, K. Hulek, R. Laza
{"title":"Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models","authors":"Sebastian Casalaina-Martin, S. Grushevsky, K. Hulek, R. Laza","doi":"10.1090/memo/1395","DOIUrl":"https://doi.org/10.1090/memo/1395","url":null,"abstract":"We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43527483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Relatively Unipotent Log de Rham Fundamental Groups","authors":"B. Chiarellotto, V. D. Proietto, Atsushi Shiho","doi":"10.1090/memo/1430","DOIUrl":"https://doi.org/10.1090/memo/1430","url":null,"abstract":"In this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta–Iovita–Kim’s article: obtaining in this way a complete algebraic criterion for good reduction for curves.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44522475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Singular Vortex Patches, I: Well-posedness Issues","authors":"T. Elgindi, In-Jee Jeong","doi":"10.1090/memo/1400","DOIUrl":"https://doi.org/10.1090/memo/1400","url":null,"abstract":"The purpose of this work is to discuss the well-posedness theory of singular vortex patches. Our main results are of two types: well-posedness and ill-posedness. On the well-posedness side, we show that globally \u0000\u0000 \u0000 m\u0000 m\u0000 \u0000\u0000-fold symmetric vortex patches with corners emanating from the origin are globally well-posed in natural regularity classes as long as \u0000\u0000 \u0000 \u0000 m\u0000 ≥\u0000 3.\u0000 \u0000 mgeq 3.\u0000 \u0000\u0000 In this case, all of the angles involved solve a closed ODE system which dictates the global-in-time dynamics of the corners and only depends on the initial locations and sizes of the corners. Along the way we obtain a global well-posedness result for a class of symmetric patches with boundary singular at the origin, which includes logarithmic spirals. On the ill-posedness side, we show that any other type of corner singularity in a vortex patch cannot evolve continuously in time except possibly when all corners involved have precisely the angle \u0000\u0000 \u0000 \u0000 π\u0000 2\u0000 \u0000 frac {pi }{2}\u0000 \u0000\u0000 for all time. Even in the case of vortex patches with corners of angle \u0000\u0000 \u0000 \u0000 π\u0000 2\u0000 \u0000 frac {pi }{2}\u0000 \u0000\u0000 or with corners which are only locally \u0000\u0000 \u0000 m\u0000 m\u0000 \u0000\u0000-fold symmetric, we prove that they are generically ill-posed. We expect that in these cases of ill-posedness, the vortex patches actually cusp immediately in a self-similar way and we derive some asymptotic models which may be useful in giving a more precise description of the dynamics. In a companion work from 2020 on singular vortex patches, we discuss the long-time behavior of symmetric vortex patches with corners and use them to construct patches on \u0000\u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 2\u0000 \u0000 mathbb {R}^2\u0000 \u0000\u0000 with interesting dynamical behavior such as cusping and spiral formation in infinite time.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47589347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fusion of defects","authors":"A. Bartels, Christopher L. Douglas, A. Henriques","doi":"10.1090/memo/1237","DOIUrl":"https://doi.org/10.1090/memo/1237","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81497638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Coefficients and Gamma Factors for Principal Series of Covering Groups","authors":"Fan Gao, F. Shahidi, Dani Szpruch","doi":"10.1090/memo/1399","DOIUrl":"https://doi.org/10.1090/memo/1399","url":null,"abstract":"We consider an \u0000\u0000 \u0000 n\u0000 n\u0000 \u0000\u0000-fold Brylinski–Deligne cover of a reductive group over a \u0000\u0000 \u0000 p\u0000 p\u0000 \u0000\u0000-adic field. Since the space of Whittaker functionals of an irreducible genuine representation of such a cover is not one-dimensional, one can consider a local coefficients matrix arising from an intertwining operator, which is the natural analogue of the local coefficients in the linear case. In this paper, we concentrate on genuine principal series representations and establish some fundamental properties of such a local coefficients matrix, including the investigation of its arithmetic invariants. As a consequence, we prove a form of the Casselman–Shalika formula which could be viewed as a natural analogue for linear algebraic groups. We also investigate in some depth the behaviour of the local coefficients matrix with respect to the restriction of genuine principal series from covers of \u0000\u0000 \u0000 \u0000 G\u0000 \u0000 L\u0000 2\u0000 \u0000 \u0000 GL_2\u0000 \u0000\u0000 to \u0000\u0000 \u0000 \u0000 S\u0000 \u0000 L\u0000 2\u0000 \u0000 \u0000 SL_2\u0000 \u0000\u0000. In particular, some further relations are unveiled between local coefficients matrices and gamma factors or metaplectic-gamma factors.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46486772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overlapping Iterated Function Systems from the Perspective of Metric Number Theory","authors":"S. Baker","doi":"10.1090/memo/1428","DOIUrl":"https://doi.org/10.1090/memo/1428","url":null,"abstract":"<p>In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet 0 comma 1 comma 3 EndSet\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{0,1,3}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet 0 comma 1 comma 3 EndSet\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{0,1,3}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> problem has positive Lebesgue measure.</p>\u0000\u0000<p>For each <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t element-of left-bracket 0 comma 1 right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">tin [0,1]</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> we let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript t\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\u0000 <mml:mi>t</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">Phi _t</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the iterated f","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60559782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential","authors":"Yi Huang, Zhe Sun","doi":"10.1090/memo/1422","DOIUrl":"https://doi.org/10.1090/memo/1422","url":null,"abstract":"We derive generalizations of McShane’s identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman–Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43474587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symbolic Extensions of Amenable Group Actions and the Comparison Property","authors":"T. Downarowicz, Guohua Zhang","doi":"10.1090/memo/1390","DOIUrl":"https://doi.org/10.1090/memo/1390","url":null,"abstract":"<p>In topological dynamics, the <italic>Symbolic Extension Entropy Theorem</italic> (SEET) (Boyle and Downarowicz, 2004) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift on finitely many symbols. The theorem gives a precise estimate on the entropy of such a symbolic extension (and hence on the necessary number of symbols). Unlike in the measure-theoretic case, where Kolmogorov–Sinai entropy serves as an estimate in an analogous problem, in the topological setup the task reaches beyond the classical theory of measure-theoretic and topological entropy. Necessary are tools from an extended theory of entropy, the <italic>theory of entropy structures</italic> developed in Downarowicz (2005). The main goal of this paper is to prove the analog of the SEET for actions of (discrete infinite) countable amenable groups:</p>\u0000\u0000<p><disp-quote>\u0000<p>\u0000 <italic>Let a countable amenable group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> act by homeomorphisms on a compact metric space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript upper G Baseline left-parenthesis upper X right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>G</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {M}_{G}(X)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> denote the simplex of all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-invariant Borel probability measures on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A function <inline-formula content-type=\"math/mathml\">\u0000<mml:math","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2019-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43127393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Fusion Systems of Component Type","authors":"M. Aschbacher","doi":"10.1090/memo/1236","DOIUrl":"https://doi.org/10.1090/memo/1236","url":null,"abstract":"Introduction. This series of lectures involves the interplay between local group theory and the theory of fusion systems, with the focus of interest the possibility of using fusion systems to simplify part of the proof of the theorem classifying the finite simple groups. For our purposes, the classification of the finite simple groups begins with the GorensteinWalter Dichotomy Theorem (cf. [ALSS]) which says that each finite group G of 2-rank at least 3 is either of component type or of characteristic 2-type. This supplies a partition of the finite groups into groups of odd and even characteristic, from the point of view of their 2-local structure. We will be concerned almost exclusively with the groups of odd characteristic: the groups of component type. However Ulrich Meierfrankenfeld’s lectures can be thought of as being concerned with the groups of even characteristic. In the case of a saturated fusion system F , the situation vis-a-vis the GorensteinWalter dichotomy is nicer: F is either of characteristic p-type or component type, irrespective of rank. Further the Dichotomy Theorem for saturated fusion systems is much easier to prove than the theorem for groups; indeed once the notion of the generalized Fitting subsystem F ∗(F) of a saturated fusion system F is put in place, and suitable properties of F ∗(F) are established, including E-balance, the proof of the Dichotomy Theorem for fusion systems is easy. But of more importance, it seems easier to work with 2-fusion systems of component type than with groups of component type. This is because in a group G of component type, a 2-local subgroup H of G may have a nontrivial core, where the core of H is the largest normal subgroup O(H) of H of odd order. The existence of these cores introduces big problems into the analysis of groups of component type. These problems can be minimized if one can prove the B-Conjecture, which says that, in a simple group,","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83058871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}