对数光滑函数空间的嵌入与刻画

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Oscar Dom'inguez, S. Tikhonov
{"title":"对数光滑函数空间的嵌入与刻画","authors":"Oscar Dom'inguez, S. Tikhonov","doi":"10.1090/memo/1393","DOIUrl":null,"url":null,"abstract":"In this paper we present a comprehensive treatment of function spaces with logarithmic smoothness (Besov, Sobolev, Triebel-Lizorkin). We establish the following results: Sharp embeddings between the Besov spaces defined by differences and by Fourier-analytical decompositions as well as between Besov and Sobolev/Triebel-Lizorkin spaces; Various new characterizations for Besov norms in terms of different K-functionals. For instance, we derive characterizations via ball averages, approximation methods, heat kernels, and Bianchini-type norms; Sharp estimates for Besov norms of derivatives and potential operators (Riesz and Bessel potentials) in terms of norms of functions themselves. We also obtain quantitative estimates of regularity properties of the fractional Laplacian. The key tools behind our results are limiting interpolation techniques and new characterizations of Besov and Sobolev norms in terms of the behavior of the Fourier transforms for functions such that their Fourier transforms are of monotone type or lacunary series.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations\",\"authors\":\"Oscar Dom'inguez, S. Tikhonov\",\"doi\":\"10.1090/memo/1393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a comprehensive treatment of function spaces with logarithmic smoothness (Besov, Sobolev, Triebel-Lizorkin). We establish the following results: Sharp embeddings between the Besov spaces defined by differences and by Fourier-analytical decompositions as well as between Besov and Sobolev/Triebel-Lizorkin spaces; Various new characterizations for Besov norms in terms of different K-functionals. For instance, we derive characterizations via ball averages, approximation methods, heat kernels, and Bianchini-type norms; Sharp estimates for Besov norms of derivatives and potential operators (Riesz and Bessel potentials) in terms of norms of functions themselves. We also obtain quantitative estimates of regularity properties of the fractional Laplacian. The key tools behind our results are limiting interpolation techniques and new characterizations of Besov and Sobolev norms in terms of the behavior of the Fourier transforms for functions such that their Fourier transforms are of monotone type or lacunary series.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 43

摘要

本文给出了对数光滑函数空间的综合处理(Besov,Sobolev,Triebel-Lizorkin)。我们建立了以下结果:由差分和傅立叶分析分解定义的Besov空间之间以及Besov和Sobolev/Triebel Lizorkin空间之间的Sharp嵌入;Besov范数在不同K泛函方面的各种新刻画。例如,我们通过球平均、近似方法、热核和Bianchini型范数导出特征;导数的Besov范数和势算子(Riesz和Bessel势)在函数本身的范数方面的Sharp估计。我们还得到了分数拉普拉斯算子正则性性质的定量估计。我们的结果背后的关键工具是限制插值技术和Besov和Sobolev范数在函数的傅立叶变换行为方面的新特征,使得它们的傅立叶变换是单调类型或空位序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations
In this paper we present a comprehensive treatment of function spaces with logarithmic smoothness (Besov, Sobolev, Triebel-Lizorkin). We establish the following results: Sharp embeddings between the Besov spaces defined by differences and by Fourier-analytical decompositions as well as between Besov and Sobolev/Triebel-Lizorkin spaces; Various new characterizations for Besov norms in terms of different K-functionals. For instance, we derive characterizations via ball averages, approximation methods, heat kernels, and Bianchini-type norms; Sharp estimates for Besov norms of derivatives and potential operators (Riesz and Bessel potentials) in terms of norms of functions themselves. We also obtain quantitative estimates of regularity properties of the fractional Laplacian. The key tools behind our results are limiting interpolation techniques and new characterizations of Besov and Sobolev norms in terms of the behavior of the Fourier transforms for functions such that their Fourier transforms are of monotone type or lacunary series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信