Analyticity Results in Bernoulli Percolation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Agelos Georgakopoulos, C. Panagiotis
{"title":"Analyticity Results in Bernoulli Percolation","authors":"Agelos Georgakopoulos, C. Panagiotis","doi":"10.1090/memo/1431","DOIUrl":null,"url":null,"abstract":"<p>We prove that for Bernoulli percolation on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript d\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive short- or long-range models, and that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Superscript b o n d Baseline greater-than 1 slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>p</mml:mi>\n <mml:mi>c</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n <mml:mi>o</mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p_c^{bond} >1/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for certain families of triangulations for which Benjamini & Schramm conjectured that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Superscript s i t e Baseline less-than-or-equal-to 1 slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>p</mml:mi>\n <mml:mi>c</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>s</mml:mi>\n <mml:mi>i</mml:mi>\n <mml:mi>t</mml:mi>\n <mml:mi>e</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p_c^{site} \\leq 1/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 13

Abstract

We prove that for Bernoulli percolation on Z d \mathbb {Z}^d , d 2 d\geq 2 , the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive short- or long-range models, and that p c b o n d > 1 / 2 p_c^{bond} >1/2 for certain families of triangulations for which Benjamini & Schramm conjectured that p c s i t e 1 / 2 p_c^{site} \leq 1/2 .

伯努利渗流的分析结果
证明了在Z d \mathbb Z{^d, d≥2 d }\geq 2上的伯努利渗流,渗流密度是超临界区间参数的解析函数。为此,我们将介绍一些具有进一步含义的技术。特别地,我们证明了对于所有传递的短期或长期模型,在亚临界区间的磁化率是解析的。对于某些三角划分族,Benjamini & Schramm推测p c site≤1/2 p_c^{site}{}\leq 1/2, p c bo on和>1/2 p_c^bond >1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信