Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
O. Bernardi, N. Holden, Xin Sun
{"title":"Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity","authors":"O. Bernardi, N. Holden, Xin Sun","doi":"10.1090/memo/1440","DOIUrl":null,"url":null,"abstract":"We set the foundation for a series of works aimed at proving strong relations between uniform random planar maps and Liouville quantum gravity (LQG). Our method relies on a bijective encoding of site-percolated planar triangulations by certain 2D lattice paths. Our bijection parallels in the discrete setting the mating-of-trees framework of LQG and Schramm-Loewner evolutions (SLE) introduced by Duplantier, Miller, and Sheffield. Combining these two correspondences allows us to relate uniform site-percolated triangulations to \n\n \n \n 8\n \n /\n \n 3\n \n \\sqrt {8/3}\n \n\n-LQG and SLE\n\n \n \n \n 6\n \n _6\n \n\n. In particular, we establish the convergence of several functionals of the percolation model to continuous random objects defined in terms of \n\n \n \n 8\n \n /\n \n 3\n \n \\sqrt {8/3}\n \n\n-LQG and SLE\n\n \n \n \n 6\n \n _6\n \n\n. For instance, we show that the exploration tree of the percolation converges to a branching SLE\n\n \n \n \n 6\n \n _6\n \n\n, and that the collection of percolation cycles converges to the conformal loop ensemble CLE\n\n \n \n \n 6\n \n _6\n \n\n. We also prove convergence of counting measure on the pivotal points of the percolation. Our results play an essential role in several other works, including a program for showing convergence of the conformal structure of uniform triangulations and works which study the behavior of random walk on the uniform infinite planar triangulation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 20

Abstract

We set the foundation for a series of works aimed at proving strong relations between uniform random planar maps and Liouville quantum gravity (LQG). Our method relies on a bijective encoding of site-percolated planar triangulations by certain 2D lattice paths. Our bijection parallels in the discrete setting the mating-of-trees framework of LQG and Schramm-Loewner evolutions (SLE) introduced by Duplantier, Miller, and Sheffield. Combining these two correspondences allows us to relate uniform site-percolated triangulations to 8 / 3 \sqrt {8/3} -LQG and SLE 6 _6 . In particular, we establish the convergence of several functionals of the percolation model to continuous random objects defined in terms of 8 / 3 \sqrt {8/3} -LQG and SLE 6 _6 . For instance, we show that the exploration tree of the percolation converges to a branching SLE 6 _6 , and that the collection of percolation cycles converges to the conformal loop ensemble CLE 6 _6 . We also prove convergence of counting measure on the pivotal points of the percolation. Our results play an essential role in several other works, including a program for showing convergence of the conformal structure of uniform triangulations and works which study the behavior of random walk on the uniform infinite planar triangulation.
三角形上的渗流:通往刘维尔量子引力的一条有效路径
我们为一系列旨在证明均匀随机平面映射与刘维尔量子引力(LQG)之间的强关系的工作奠定了基础。我们的方法依赖于通过某些2D晶格路径对站点渗透平面三角形进行的双射编码。我们的双射在离散环境中类似于Duplantier、Miller和Sheffield引入的LQG和Schramm-Loewner进化(SLE)的树的交配框架。将这两种对应关系结合起来,可以将均匀的站点渗透三角形与8/3\sqrt{8/3}-LLQG和SLE _6联系起来。特别地,我们建立了渗流模型的几个泛函对用8/3\sqrt{8/3}-LLQG和SLE _6定义的连续随机对象的收敛性。例如,我们证明了渗流的探索树收敛于分支的SLE 6 _6,并且渗流循环的集合收敛于共形环系综CLE 6 _6。我们还证明了计数测度在渗流关键点上的收敛性。我们的结果在其他几项工作中发挥了重要作用,包括一个显示均匀三角共形结构收敛性的程序,以及研究均匀无限平面三角上随机游动行为的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信