{"title":"高等Teichmüller理论的McShane恒等式与Goncharov-Shen势","authors":"Yi Huang, Zhe Sun","doi":"10.1090/memo/1422","DOIUrl":null,"url":null,"abstract":"We derive generalizations of McShane’s identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman–Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential\",\"authors\":\"Yi Huang, Zhe Sun\",\"doi\":\"10.1090/memo/1422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive generalizations of McShane’s identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman–Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1422\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1422","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential
We derive generalizations of McShane’s identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman–Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.