Symbolic Extensions of Amenable Group Actions and the Comparison Property

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T. Downarowicz, Guohua Zhang
{"title":"Symbolic Extensions of Amenable Group Actions and the Comparison Property","authors":"T. Downarowicz, Guohua Zhang","doi":"10.1090/memo/1390","DOIUrl":null,"url":null,"abstract":"<p>In topological dynamics, the <italic>Symbolic Extension Entropy Theorem</italic> (SEET) (Boyle and Downarowicz, 2004) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift on finitely many symbols. The theorem gives a precise estimate on the entropy of such a symbolic extension (and hence on the necessary number of symbols). Unlike in the measure-theoretic case, where Kolmogorov–Sinai entropy serves as an estimate in an analogous problem, in the topological setup the task reaches beyond the classical theory of measure-theoretic and topological entropy. Necessary are tools from an extended theory of entropy, the <italic>theory of entropy structures</italic> developed in Downarowicz (2005). The main goal of this paper is to prove the analog of the SEET for actions of (discrete infinite) countable amenable groups:</p>\n\n<p><disp-quote>\n<p>\n <italic>Let a countable amenable group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> act by homeomorphisms on a compact metric space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript upper G Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_{G}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denote the simplex of all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invariant Borel probability measures on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript sans-serif upper A\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>E</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{E}_{\\mathsf {A}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript upper G Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_{G}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> equals the extension entropy function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Superscript pi\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mi>π<!-- π --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">h^\\pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a symbolic extension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon left-parenthesis upper Y comma upper G right-parenthesis right-arrow left-parenthesis upper X comma upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi :(Y,G)\\to (X,G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Superscript pi Baseline left-parenthesis mu right-parenthesis equals sup left-brace right-brace colon of hh nu left-parenthesis right-parenthesis comma upper Y comma upper G colon element-of element-of nu of pi pi minus minus 1 left-parenthesis right-parenthesis mu\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mi>π<!-- π --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo movablelimits=\"true\" form=\"prefix\">sup</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>ν<!-- ν --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>:</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h^\\pi (\\mu )=\\sup \\{h_\\nu (Y,G): \\nu \\in \\pi ^{-1}(\\mu )\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu element-of script upper M Subscript upper G Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu \\in \\mathcal {M}_{G}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript sans-serif upper A\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>E</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{E}_{\\mathsf {A}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a finite affine superenvelope of the entropy structure of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(X,G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. </italic> </p>\n</disp-quote></p>\n\n<p>Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions. In full generality we are able to prove a slightly weaker version of SEET, in which symbolic extensions are replac","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 20

Abstract

In topological dynamics, the Symbolic Extension Entropy Theorem (SEET) (Boyle and Downarowicz, 2004) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift on finitely many symbols. The theorem gives a precise estimate on the entropy of such a symbolic extension (and hence on the necessary number of symbols). Unlike in the measure-theoretic case, where Kolmogorov–Sinai entropy serves as an estimate in an analogous problem, in the topological setup the task reaches beyond the classical theory of measure-theoretic and topological entropy. Necessary are tools from an extended theory of entropy, the theory of entropy structures developed in Downarowicz (2005). The main goal of this paper is to prove the analog of the SEET for actions of (discrete infinite) countable amenable groups:

Let a countable amenable group G G act by homeomorphisms on a compact metric space X X and let M G ( X ) \mathcal {M}_{G}(X) denote the simplex of all G G -invariant Borel probability measures on X X . A function E A {E}_{\mathsf {A}} on M G ( X ) \mathcal {M}_{G}(X) equals the extension entropy function h π h^\pi of a symbolic extension π : ( Y , G ) ( X , G ) \pi :(Y,G)\to (X,G) , where h π ( μ ) = sup { h ν ( Y , G ) : ν π 1 ( μ ) } h^\pi (\mu )=\sup \{h_\nu (Y,G): \nu \in \pi ^{-1}(\mu )\} ( μ M G ( X ) \mu \in \mathcal {M}_{G}(X) ), if and only if E A {E}_{\mathsf {A}} is a finite affine superenvelope of the entropy structure of ( X , G ) (X,G) .

Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of Z \mathbb {Z} -actions. In full generality we are able to prove a slightly weaker version of SEET, in which symbolic extensions are replac

可服从组动作的符号扩展和比较属性
在拓扑动力学中,符号扩展熵定理(SEET) (Boyle和Downarowicz, 2004)描述了通过将动力系统扩展到有限多个符号上的子移来实现无损数字化的可能性。该定理给出了这种符号扩展的熵的精确估计(因此也给出了必要的符号数量)。不像在测量理论的情况下,Kolmogorov-Sinai熵作为一个类似问题的估计,在拓扑设置的任务超越了测量理论和拓扑熵的经典理论。必要的工具来自于熵的扩展理论,即Downarowicz(2005)发展的熵结构理论。本文的主要目的是证明(离散无限)可数可调群作用的SEET的类似性:设一个可数可调群G G在紧度量空间X X上通过同胚作用,设M G(X) \mathcal M_G{(}X)表示X X上所有G G不变Borel概率测度的单纯形。函数E A {E_}{}{\mathsf A{在}}M G(X) \mathcal M_G{(X)}上等于符号扩展π的扩展熵函数h π h^ {}\pi:(Y,G)→(X,G) \pi:(Y,G) \to (X,G),其中h π (μ)= sup h ν {(Y,G): ν∈π−1 (μ) h^}\pi (\mu)= \sup {h_ \nu (Y,G):\nu\in\pi ^-1{(}\mu)} (μ∈M G(X) \mu\in\mathcal M_G{(}X{)}),当且仅当E A E_ {}{\mathsf A是(X,G) (X,G)的熵结构的有限{仿射}}超包络。当然,在陈述之前,先介绍了熵结构及其超包络的概念,这些概念改编自Z \mathbb Z -actions的情况{。}总的来说,我们能够证明一个稍弱的SEET版本,其中符号扩展被替换
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信