{"title":"度量数论视角下的重叠迭代函数系统","authors":"S. Baker","doi":"10.1090/memo/1428","DOIUrl":null,"url":null,"abstract":"<p>In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet 0 comma 1 comma 3 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{0,1,3\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet 0 comma 1 comma 3 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{0,1,3\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> problem has positive Lebesgue measure.</p>\n\n<p>For each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t element-of left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\in [0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript t\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Phi _t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the iterated function system given by <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript t Baseline colon-equal StartSet phi 1 left-parenthesis x right-parenthesis equals StartFraction x Over 2 EndFraction comma phi 2 left-parenthesis x right-parenthesis equals StartFraction x plus 1 Over 2 EndFraction comma phi 3 left-parenthesis x right-parenthesis equals StartFraction x plus t Over 2 EndFraction comma phi 4 left-parenthesis x right-parenthesis equals StartFraction x plus 1 plus t Over 2 EndFraction EndSet period\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>t</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≔</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">{</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msub>\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mi>x</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">}</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Phi _{t}≔\\Big \\{\\phi _1(x)=\\frac {x}{2},\\phi _2(x)=\\frac {x+1}{2},\\phi _3(x)=\\frac {x+t}{2},\\phi _{4}(x)=\\frac {x+1+t}{2}\\Big \\}. \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n We prove that either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript t\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Phi _t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains an exact overlap, or we observe Khintchine like behaviour. Our analysis shows that by studying the metric properties of limsup sets, we can distinguish between the overlapping behaviour of iterated function systems in a way that is not available to us by simply studying properties of self-similar measures.</p>\n\n<p>Last of all, we introduce a property of an iterated function system that we call being consistently separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous. We include several explicit examples of consistently separated iterated function systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Overlapping Iterated Function Systems from the Perspective of Metric Number Theory\",\"authors\":\"S. Baker\",\"doi\":\"10.1090/memo/1428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartSet 0 comma 1 comma 3 EndSet\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{0,1,3\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartSet 0 comma 1 comma 3 EndSet\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{0,1,3\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> problem has positive Lebesgue measure.</p>\\n\\n<p>For each <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t element-of left-bracket 0 comma 1 right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\in [0,1]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> we let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Phi Subscript t\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi>\\n <mml:mi>t</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Phi _t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be the iterated function system given by <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Phi Subscript t Baseline colon-equal StartSet phi 1 left-parenthesis x right-parenthesis equals StartFraction x Over 2 EndFraction comma phi 2 left-parenthesis x right-parenthesis equals StartFraction x plus 1 Over 2 EndFraction comma phi 3 left-parenthesis x right-parenthesis equals StartFraction x plus t Over 2 EndFraction comma phi 4 left-parenthesis x right-parenthesis equals StartFraction x plus 1 plus t Over 2 EndFraction EndSet period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>≔</mml:mo>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">{</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:msub>\\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mi>x</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>x</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>x</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>ϕ<!-- ϕ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>4</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>x</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">}</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Phi _{t}≔\\\\Big \\\\{\\\\phi _1(x)=\\\\frac {x}{2},\\\\phi _2(x)=\\\\frac {x+1}{2},\\\\phi _3(x)=\\\\frac {x+t}{2},\\\\phi _{4}(x)=\\\\frac {x+1+t}{2}\\\\Big \\\\}. \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n We prove that either <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Phi Subscript t\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi>\\n <mml:mi>t</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Phi _t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains an exact overlap, or we observe Khintchine like behaviour. Our analysis shows that by studying the metric properties of limsup sets, we can distinguish between the overlapping behaviour of iterated function systems in a way that is not available to us by simply studying properties of self-similar measures.</p>\\n\\n<p>Last of all, we introduce a property of an iterated function system that we call being consistently separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous. We include several explicit examples of consistently separated iterated function systems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11
摘要
本文提出了一种研究重叠迭代函数系统的新方法。这种方法的灵感来自于Khintchine关于Diophantine近似的一个著名结果,该结果表明,对于一类limsup集合,它们的勒贝格测度是由自然发生的体积和的收敛或发散决定的。对于许多重叠迭代函数系统的参数化族,我们证明了一个典型的成员将表现出类似钦钦机的行为。我们的结果适用的迭代函数系统族包括伯努利卷积、{0,1,3{0,1,3}}问题和具有变化平移参数的仿射收缩引起的迭代函数系统族。作为我们分析的副产品,我们得到了关于Bernoulli卷积绝对连续性的一些著名结果的新的证明,当{0,1,3{0,1,3}}问题中的吸引子具有正的Lebesgue测度时。对于每一个t∈[0,1]t \in[0,1],设Φ t \Phi _t为Φ t的迭代函数系统:{φ 2 (x) = x + 1 2, φ 3 (x) = x + t 2, φ 4 (x) = x + 1 + t 2}。\begin{equation*} \Phi _{t}≔\Big \{\phi _1(x)=\frac {x}{2},\phi _2(x)=\frac {x+1}{2},\phi _3(x)=\frac {x+t}{2},\phi _{4}(x)=\frac {x+1+t}{2}\Big \}. \end{equation*}我们证明要么Φ t \Phi _t包含一个精确的重叠,要么我们观察到类似钦钦的行为。我们的分析表明,通过研究limsup集的度量性质,我们可以区分迭代函数系统的重叠行为,这是我们通过简单地研究自相似度量的性质所无法做到的。最后,我们引入迭代函数系统的一个性质,我们称之为相对于度量的一致分离。我们证明了这一性质意味着测度的推进是绝对连续的。我们包含了几个一致分离的迭代函数系统的显式示例。
Overlapping Iterated Function Systems from the Perspective of Metric Number Theory
In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the {0,1,3}\{0,1,3\} problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the {0,1,3}\{0,1,3\} problem has positive Lebesgue measure.
For each t∈[0,1]t\in [0,1] we let Φt\Phi _t be the iterated function system given by Φt≔{ϕ1(x)=x2,ϕ2(x)=x+12,ϕ3(x)=x+t2,ϕ4(x)=x+1+t2}.\begin{equation*} \Phi _{t}≔\Big \{\phi _1(x)=\frac {x}{2},\phi _2(x)=\frac {x+1}{2},\phi _3(x)=\frac {x+t}{2},\phi _{4}(x)=\frac {x+1+t}{2}\Big \}. \end{equation*}
We prove that either Φt\Phi _t contains an exact overlap, or we observe Khintchine like behaviour. Our analysis shows that by studying the metric properties of limsup sets, we can distinguish between the overlapping behaviour of iterated function systems in a way that is not available to us by simply studying properties of self-similar measures.
Last of all, we introduce a property of an iterated function system that we call being consistently separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous. We include several explicit examples of consistently separated iterated function systems.