相对单有效Log-de-Ram基群的比较

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Chiarellotto, V. D. Proietto, Atsushi Shiho
{"title":"相对单有效Log-de-Ram基群的比较","authors":"B. Chiarellotto, V. D. Proietto, Atsushi Shiho","doi":"10.1090/memo/1430","DOIUrl":null,"url":null,"abstract":"In this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta–Iovita–Kim’s article: obtaining in this way a complete algebraic criterion for good reduction for curves.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Comparison of Relatively Unipotent Log de Rham Fundamental Groups\",\"authors\":\"B. Chiarellotto, V. D. Proietto, Atsushi Shiho\",\"doi\":\"10.1090/memo/1430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta–Iovita–Kim’s article: obtaining in this way a complete algebraic criterion for good reduction for curves.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

摘要

本文证明了特征为零的精细对数格式的若干适当对数光滑积分态射的相对单幂对数de Rham基群的各种定义的相容性。我们的证明是纯代数的。作为应用,我们给出了稳定对数曲线的幂偶log de Rham基群上的单调作用的纯代数计算。作为推论,我们对Andreatta-Iovita-Kim文章的超越部分给出了一个纯代数证明:由此获得了曲线良好约简的一个完备的代数判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Relatively Unipotent Log de Rham Fundamental Groups
In this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta–Iovita–Kim’s article: obtaining in this way a complete algebraic criterion for good reduction for curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信