On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kihyun Kim, Soonsik Kwon
{"title":"On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability","authors":"Kihyun Kim, Soonsik Kwon","doi":"10.1090/memo/1409","DOIUrl":null,"url":null,"abstract":"<p>We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-critical NLS. In this work, we consider pseudoconformal blow-up solutions under <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariance, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with given asymptotic profile <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">z^{\\ast }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket u left-parenthesis t comma r right-parenthesis minus StartFraction 1 Over StartAbsoluteValue t EndAbsoluteValue EndFraction upper Q left-parenthesis StartFraction r Over StartAbsoluteValue t EndAbsoluteValue EndFraction right-parenthesis e Superscript minus i StartFraction r squared Over 4 StartAbsoluteValue t EndAbsoluteValue EndFraction Baseline right-bracket e Superscript i m theta Baseline right-arrow z Superscript asterisk Baseline in upper H Superscript 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">[</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n <mml:mi>Q</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac>\n <mml:mi>r</mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>i</mml:mi>\n <mml:mfrac>\n <mml:msup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mrow>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">]</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mspace width=\"2em\" />\n <mml:mtext>in </mml:mtext>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Big [u(t,r)-\\frac {1}{|t|}Q\\Big (\\frac {r}{|t|}\\Big )e^{-i\\frac {r^{2}}{4|t|}}\\Big ]e^{im\\theta }\\to z^{\\ast }\\qquad \\text {in }H^{1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow 0 Superscript minus\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msup>\n <mml:mn>0</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\to 0^{-}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q left-parenthesis r right-parenthesis e Superscript i m theta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Q</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q(r)e^{im\\theta }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a static solution. Secondly, we show that such blow-up solutions are unique in a suitable class. Lastly, yet most importantly, we exhibit an instability mechanism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We construct a continuous family of solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Superscript left-parenthesis eta right-parenthesis\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">u^{(\\eta )}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 less-than-or-equal-to eta much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0\\leq \\eta \\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Superscript left-parenthesis 0 right-parenthesis Baseline equals u\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo>=</mml:mo>\n ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is L 2 L^{2} -critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the L 2 L^{2} -critical NLS. In this work, we consider pseudoconformal blow-up solutions under m m -equivariance, m 1 m\geq 1 . Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution u u with given asymptotic profile z z^{\ast } : \[ [ u ( t , r ) 1 | t | Q ( r | t | ) e i r 2 4 | t | ] e i m θ z in  H 1 \Big [u(t,r)-\frac {1}{|t|}Q\Big (\frac {r}{|t|}\Big )e^{-i\frac {r^{2}}{4|t|}}\Big ]e^{im\theta }\to z^{\ast }\qquad \text {in }H^{1} \] as t 0 t\to 0^{-} , where Q ( r ) e i m θ Q(r)e^{im\theta } is a static solution. Secondly, we show that such blow-up solutions are unique in a suitable class. Lastly, yet most importantly, we exhibit an instability mechanism of u u . We construct a continuous family of solutions u ( η ) u^{(\eta )} , 0 η 1 0\leq \eta \ll 1 , such that u ( 0 ) =

自对偶Chern-Simons-Schrödinger方程的伪共形Blow-Up解:存在性、唯一性和不稳定性
我们考虑自对偶Chern-Simons-Schrödinger方程(CSS),也称为规范非线性薛定谔方程(NLS)。CSS是L2L^{2}-临界的,包含孤立子,并且具有伪共形对称性。这些特征类似于L2L^{2}-临界NLS。在这项工作中,我们考虑m-等变,m≥1m\geq1下的伪共形爆破解。我们的结果有三个方面。首先,我们构造了一个具有给定渐近轮廓z*z^{\ast}的伪共形爆破解u:\[[u(t,r)−1|t|Q(r|t|)e−i r 2 4|t|]e i mθ→ H1\Big[u(t,r)-\frac{1}{|t|}Q\Big→ 0−t\到0^{-},其中Q(r)e i mθQ(r。其次,我们证明了这种爆破解决方案在合适的类别中是独特的。最后,但最重要的是,我们展示了u u的不稳定性机制。我们构造了一个连续的解族u(η)u^{(\eta)},0≤η≪1 0\leq\eta\lll 1,使得u(0)=
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信