Memoirs of the American Mathematical Society最新文献

筛选
英文 中文
Corrigendum and improvements to “Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations”, and its consequences 对“内退化非光滑抛物方程的Carleman估计、可观察性不等式和零可控性”及其结果的更正和改进
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2021-07-01 DOI: 10.1090/memo/1332
G. Fragnelli, Dimitri Mugnai
{"title":"Corrigendum and improvements to “Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations”, and its consequences","authors":"G. Fragnelli, Dimitri Mugnai","doi":"10.1090/memo/1332","DOIUrl":"https://doi.org/10.1090/memo/1332","url":null,"abstract":"This paper is a corrigendum of one hypothesis introduced in Mem. Amer. Math. Soc. 242 (2016), no. 1146, and used again in J. Differential Equations 260 (2016), pp. 1314–1371 and Adv. Nonlinear Anal. 6 (2017), pp. 61–84]. We give here the corrected proofs of the concerned results, improving most of them.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42212631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Model theory of 𝐶*-algebras <s:1> *-代数的模型理论
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2021-05-01 DOI: 10.1090/memo/1324
I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter
{"title":"Model theory of 𝐶*-algebras","authors":"I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter","doi":"10.1090/memo/1324","DOIUrl":"https://doi.org/10.1090/memo/1324","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60558747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Galois and cleft monoidal cowreaths. Applications Galois和裂单胞体共同呼吸。应用程序
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2021-03-01 DOI: 10.1090/memo/1322
D. Bulacu, B. Torrecillas
{"title":"Galois and cleft monoidal cowreaths. Applications","authors":"D. Bulacu, B. Torrecillas","doi":"10.1090/memo/1322","DOIUrl":"https://doi.org/10.1090/memo/1322","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type 李型例外群的中秩李基元和极大子群
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2021-02-22 DOI: 10.1090/memo/1434
David A. Craven
{"title":"On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type","authors":"David A. Craven","doi":"10.1090/memo/1434","DOIUrl":"https://doi.org/10.1090/memo/1434","url":null,"abstract":"<p>We study embeddings of groups of Lie type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> into exceptional algebraic groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the same characteristic. We exclude the case where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is of type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">P</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">S</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">L</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {PSL}_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is <italic>Lie primitive</italic> if it is not contained in any proper, positive-dimensional subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>With a few possible exceptions, we prove that there are no Lie primitive subgroups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41510240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The 2D compressible Euler equations in bounded impermeable domains with corners 带角有界不渗透区域中的二维可压缩欧拉方程
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2021-01-01 DOI: 10.1090/MEMO/1313
P. Godin
{"title":"The 2D compressible Euler equations in\u0000 bounded impermeable domains with corners","authors":"P. Godin","doi":"10.1090/MEMO/1313","DOIUrl":"https://doi.org/10.1090/MEMO/1313","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60559126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms Siegel尖形上的Hecke算子和特征值系统
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2020-11-01 DOI: 10.1090/memo/1306
Kazuyuki Hatada
{"title":"Hecke Operators and Systems of Eigenvalues on\u0000 Siegel Cusp Forms","authors":"Kazuyuki Hatada","doi":"10.1090/memo/1306","DOIUrl":"https://doi.org/10.1090/memo/1306","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86973114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On stability of type II blow up for the critical nonlinear wave equation on ℝ³⁺¹ 上临界非线性波动方程II型爆破的稳定性ℝ³⁺cco
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2020-09-01 DOI: 10.1090/memo/1301
J. Krieger
{"title":"On stability of type II blow up for the\u0000 critical nonlinear wave equation on ℝ³⁺¹","authors":"J. Krieger","doi":"10.1090/memo/1301","DOIUrl":"https://doi.org/10.1090/memo/1301","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47815017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Deformation and Unobstructedness of Determinantal Schemes 行列式格式的变形与无障碍
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2020-07-23 DOI: 10.1090/memo/1418
Jan O. Kleppe, R. Mir'o-Roig
{"title":"Deformation and Unobstructedness of Determinantal Schemes","authors":"Jan O. Kleppe, R. Mir'o-Roig","doi":"10.1090/memo/1418","DOIUrl":"https://doi.org/10.1090/memo/1418","url":null,"abstract":"<p>A closed subscheme <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X subset-of double-struck upper P Superscript n\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">P</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Xsubset mathbb {P}^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is said to be <italic>determinantal</italic> if its homogeneous saturated ideal can be generated by the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s times s\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">stimes s</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> minors of a homogeneous <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p times q\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:mi>q</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ptimes q</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> matrix satisfying <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis p minus s plus 1 right-parenthesis left-parenthesis q minus s plus 1 right-parenthesis equals n minus dimension upper X\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi>dim</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(p-s+1)(q-s+1)=n - dim X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and it is said to be <italic>standard determinantal</italic> if, in addition, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals min left-parenthesis p comma q right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mo movablelimits=\"true\" form=\"prefix\">min</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43494237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Unitarizability in Corank Three for Classical 𝑝-adic Groups 经典𝑝-adic组的Corank 3的单一性
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2020-06-22 DOI: 10.1090/memo/1421
Marko Tadić
{"title":"Unitarizability in Corank Three for Classical 𝑝-adic Groups","authors":"Marko Tadić","doi":"10.1090/memo/1421","DOIUrl":"https://doi.org/10.1090/memo/1421","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-points of a classical group defined over a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\u0000 <mml:semantics>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We classify the irreducible unitarizable representation of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that are subquotients of the parabolic induction of cuspidal representations of Levi subgroup of corank at most 3 in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46100343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Localization for 𝑇𝐻𝐻(𝑘𝑢) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories 𝑇𝐻𝐻(𝑘𝑢)的局部化与Waldhausen范畴的拓扑Hochschild和循环同调
IF 1.9 4区 数学
Memoirs of the American Mathematical Society Pub Date : 2020-05-01 DOI: 10.1090/memo/1286
A. Blumberg, Michael A. Mandell
{"title":"Localization for 𝑇𝐻𝐻(𝑘𝑢) and the Topological\u0000 Hochschild and Cyclic Homology of Waldhausen\u0000 Categories","authors":"A. Blumberg, Michael A. Mandell","doi":"10.1090/memo/1286","DOIUrl":"https://doi.org/10.1090/memo/1286","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46602501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信