{"title":"Corrigendum and improvements to “Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations”, and its consequences","authors":"G. Fragnelli, Dimitri Mugnai","doi":"10.1090/memo/1332","DOIUrl":"https://doi.org/10.1090/memo/1332","url":null,"abstract":"This paper is a corrigendum of one hypothesis introduced in Mem. Amer. Math. Soc. 242 (2016), no. 1146, and used again in J. Differential Equations 260 (2016), pp. 1314–1371 and Adv. Nonlinear Anal. 6 (2017), pp. 61–84]. We give here the corrected proofs of the concerned results, improving most of them.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42212631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter
{"title":"Model theory of 𝐶*-algebras","authors":"I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter","doi":"10.1090/memo/1324","DOIUrl":"https://doi.org/10.1090/memo/1324","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60558747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Galois and cleft monoidal cowreaths. Applications","authors":"D. Bulacu, B. Torrecillas","doi":"10.1090/memo/1322","DOIUrl":"https://doi.org/10.1090/memo/1322","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type","authors":"David A. Craven","doi":"10.1090/memo/1434","DOIUrl":"https://doi.org/10.1090/memo/1434","url":null,"abstract":"<p>We study embeddings of groups of Lie type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> into exceptional algebraic groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the same characteristic. We exclude the case where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is of type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">P</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">S</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">L</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {PSL}_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is <italic>Lie primitive</italic> if it is not contained in any proper, positive-dimensional subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>With a few possible exceptions, we prove that there are no Lie primitive subgroups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41510240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 2D compressible Euler equations in\u0000 bounded impermeable domains with corners","authors":"P. Godin","doi":"10.1090/MEMO/1313","DOIUrl":"https://doi.org/10.1090/MEMO/1313","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60559126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}