Decorated Dyck paths, polyominoes, and the Delta conjecture

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michele D'Adderio, Alessandro Iraci, A. V. Wyngaerd
{"title":"Decorated Dyck paths, polyominoes, and the Delta conjecture","authors":"Michele D'Adderio, Alessandro Iraci, A. V. Wyngaerd","doi":"10.1090/memo/1370","DOIUrl":null,"url":null,"abstract":"<p>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-analogue of the Narayana numbers”, 2014). This settles in particular the cases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle dot comma e Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle \\cdot ,e_{n-d}h_d\\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle dot comma h Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle \\cdot ,h_{n-d}h_d\\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Schröder conjecture” (2004).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

Abstract

We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the q , t q,t -Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a q , t q,t -analogue of the Narayana numbers”, 2014). This settles in particular the cases , e n d h d \langle \cdot ,e_{n-d}h_d\rangle and , h n d h d \langle \cdot ,h_{n-d}h_d\rangle of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the q , t q,t -Schröder conjecture” (2004).

装饰堤防路径,多项式和Delta猜想
我们讨论了装饰Dyck路径和装饰平行四边形多项式的组合,将Haglund(“q,t q,t -Schröder猜想的证明”,2004)和Aval等人(“平行四边形多项式的统计和Narayana数的q,t q,t模拟”,2014)的主要结果扩展到装饰情况。这特别解决了⟨⋅,e n-d h d⟩\langle \cdot,e_{n-d}h_d\rangle和⟨,h n-d h d⟩\langle \cdot,h_{n-d}h_d\rangle的Haglund, Remmel和Wilson(“Delta猜想”,2018)的Delta猜想的情况。在此过程中,我们引入了一些新的统计数据,制定了一些新的猜想,证明了对称函数的一些新的恒等式,并回答了文献中的一些开放问题(例如,来自Aval, Bergeron和Garsia [2015], Haglund, Remmel和Wilson[2018],以及Zabrocki[2019])。主要的技术工具是麦克唐纳多项式理论中的一个新恒等式,它扩展了哈格伦德在“q,t q,t -Schröder猜想的证明”(2004)中的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信