Michele D'Adderio, Alessandro Iraci, A. V. Wyngaerd
{"title":"装饰堤防路径,多项式和Delta猜想","authors":"Michele D'Adderio, Alessandro Iraci, A. V. Wyngaerd","doi":"10.1090/memo/1370","DOIUrl":null,"url":null,"abstract":"<p>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-analogue of the Narayana numbers”, 2014). This settles in particular the cases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle dot comma e Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle \\cdot ,e_{n-d}h_d\\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle dot comma h Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle \\cdot ,h_{n-d}h_d\\rangle</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q comma t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q,t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Schröder conjecture” (2004).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Decorated Dyck paths, polyominoes, and the Delta conjecture\",\"authors\":\"Michele D'Adderio, Alessandro Iraci, A. V. Wyngaerd\",\"doi\":\"10.1090/memo/1370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q comma t\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q,t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q comma t\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q,t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-analogue of the Narayana numbers”, 2014). This settles in particular the cases <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle dot comma e Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>e</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>d</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mi>h</mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle \\\\cdot ,e_{n-d}h_d\\\\rangle</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle dot comma h Subscript n minus d Baseline h Subscript d Baseline mathematical right-angle\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>h</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>d</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mi>h</mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle \\\\cdot ,h_{n-d}h_d\\\\rangle</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q comma t\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q,t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Schröder conjecture” (2004).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12
摘要
我们讨论了装饰Dyck路径和装饰平行四边形多项式的组合,将Haglund(“q,t q,t -Schröder猜想的证明”,2004)和Aval等人(“平行四边形多项式的统计和Narayana数的q,t q,t模拟”,2014)的主要结果扩展到装饰情况。这特别解决了⟨⋅,e n-d h d⟩\langle \cdot,e_{n-d}h_d\rangle和⟨,h n-d h d⟩\langle \cdot,h_{n-d}h_d\rangle的Haglund, Remmel和Wilson(“Delta猜想”,2018)的Delta猜想的情况。在此过程中,我们引入了一些新的统计数据,制定了一些新的猜想,证明了对称函数的一些新的恒等式,并回答了文献中的一些开放问题(例如,来自Aval, Bergeron和Garsia [2015], Haglund, Remmel和Wilson[2018],以及Zabrocki[2019])。主要的技术工具是麦克唐纳多项式理论中的一个新恒等式,它扩展了哈格伦德在“q,t q,t -Schröder猜想的证明”(2004)中的一个定理。
Decorated Dyck paths, polyominoes, and the Delta conjecture
We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund (“A proof of the q,tq,t-Schröder conjecture”, 2004) and Aval et al. (“Statistics on parallelogram polyominoes and a q,tq,t-analogue of the Narayana numbers”, 2014). This settles in particular the cases ⟨⋅,en−dhd⟩\langle \cdot ,e_{n-d}h_d\rangle and ⟨⋅,hn−dhd⟩\langle \cdot ,h_{n-d}h_d\rangle of the Delta conjecture of Haglund, Remmel and Wilson (“The delta conjecture”, 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [2015], Haglund, Remmel and Wilson [2018], and Zabrocki [2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in “A proof of the q,tq,t-Schröder conjecture” (2004).