{"title":"Banach空间中的欧氏结构与算子理论","authors":"N. Kalton, E. Lorist, L. Weis","doi":"10.1090/memo/1433","DOIUrl":null,"url":null,"abstract":"<p>We present a general method to extend results on Hilbert space operators to the Banach space setting by representing certain sets of Banach space operators <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on a Hilbert space. Our assumption on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is expressed in terms of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-boundedness for a Euclidean structure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the underlying Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This notion is originally motivated by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma\">\n <mml:semantics>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-boundedness of sets of operators, but for example any operator ideal from the Euclidean space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Subscript n Superscript 2\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\ell ^2_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defines such a structure. Therefore, our method is quite flexible. Conversely we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has to be <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-bounded for some Euclidean structure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to be representable on a Hilbert space.</p>\n\n<p>By choosing the Euclidean structure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> accordingly, we get a unified and more general approach to the Kwapień–Maurey factorization theorem and the factorization theory of Maurey, Nikišin and Rubio de Francia. This leads to an improved version of the Banach function space-valued extension theorem of Rubio de Francia and a quantitative proof of the boundedness of the lattice Hardy–Littlewood maximal operator. Furthermore, we use these Euclidean structures to build vector-valued function spaces. These enjoy the nice property that any bounded operator on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> extends to a bounded operator on these vector-valued function spaces, which is in stark contrast to the extension problem for Bochner spaces. With these spaces we define an interpolation method, which has formulations modelled after both the real and the complex interpolation method.</p>\n\n<p>Using our representation theorem, we prove a transference principle for sectorial operators on a Banach space, enabling us to extend Hilbert space results for sectorial operators to the Banach space setting. We for example extend and refine the known theory based on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-boundedness for the joint and operator-valued <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-calculus. Moreover, we extend the classical characterization of the boundedness of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-calculus on Hilbert spaces in terms of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B upper I upper P\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mi>I</mml:mi>\n <mml:mi>P</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">BIP</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, square functions and dilations to the Banach space setting. Furthermore we establish, via the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-calculus, a version of Littlewood–Paley theory and associated spaces of fractional smoothness for a rather large class of sectorial operators. Our abstract setup allows us to reduce assumptions on the geometry of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such as (co)type and UMD. We conclude with some sophisticated counterexamples for sectorial operators, with as a highlight the construction of a sectorial operator of angle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on a closed subspace of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mm","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Euclidean Structures and Operator Theory in Banach Spaces\",\"authors\":\"N. Kalton, E. Lorist, L. Weis\",\"doi\":\"10.1090/memo/1433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a general method to extend results on Hilbert space operators to the Banach space setting by representing certain sets of Banach space operators <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on a Hilbert space. Our assumption on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is expressed in terms of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-boundedness for a Euclidean structure <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the underlying Banach space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This notion is originally motivated by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>- or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma\\\">\\n <mml:semantics>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-boundedness of sets of operators, but for example any operator ideal from the Euclidean space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l Subscript n Superscript 2\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mi>n</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell ^2_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> defines such a structure. Therefore, our method is quite flexible. Conversely we show that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> has to be <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-bounded for some Euclidean structure <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to be representable on a Hilbert space.</p>\\n\\n<p>By choosing the Euclidean structure <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> accordingly, we get a unified and more general approach to the Kwapień–Maurey factorization theorem and the factorization theory of Maurey, Nikišin and Rubio de Francia. This leads to an improved version of the Banach function space-valued extension theorem of Rubio de Francia and a quantitative proof of the boundedness of the lattice Hardy–Littlewood maximal operator. Furthermore, we use these Euclidean structures to build vector-valued function spaces. These enjoy the nice property that any bounded operator on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> extends to a bounded operator on these vector-valued function spaces, which is in stark contrast to the extension problem for Bochner spaces. With these spaces we define an interpolation method, which has formulations modelled after both the real and the complex interpolation method.</p>\\n\\n<p>Using our representation theorem, we prove a transference principle for sectorial operators on a Banach space, enabling us to extend Hilbert space results for sectorial operators to the Banach space setting. We for example extend and refine the known theory based on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-boundedness for the joint and operator-valued <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-calculus. Moreover, we extend the classical characterization of the boundedness of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-calculus on Hilbert spaces in terms of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B upper I upper P\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>B</mml:mi>\\n <mml:mi>I</mml:mi>\\n <mml:mi>P</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">BIP</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, square functions and dilations to the Banach space setting. Furthermore we establish, via the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-calculus, a version of Littlewood–Paley theory and associated spaces of fractional smoothness for a rather large class of sectorial operators. Our abstract setup allows us to reduce assumptions on the geometry of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, such as (co)type and UMD. We conclude with some sophisticated counterexamples for sectorial operators, with as a highlight the construction of a sectorial operator of angle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\">\\n <mml:semantics>\\n <mml:mn>0</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on a closed subspace of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript p\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than p greater-than normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>1</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mm\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
摘要
通过表示Hilbert空间上的某些Banach空间算子Γ\Gamma集,我们提出了一种将Hilbert空间算子的结果推广到Banach空间集的一般方法。我们对Γ\Gamma的假设是用下面Banach空间X X上欧几里得结构α\alpha的α\alpha-有界性来表示的。这个概念最初是由算子集的R\mathcal{R}-或γ\gamma-有界性引起的,但例如欧几里得空间中的任何算子理想ℓ n2\ell^2_n到X X定义了这样一个结构。因此,我们的方法相当灵活。相反,我们证明了Γ\Gamma必须是α\alpha-有界的,这样一些欧几里得结构α\alpha才能在Hilbert空间上表示。通过相应地选择欧几里得结构α\alpha,我们得到了Kwapień–Maurey因子分解定理和Maurey、Nikišin和Rubio de Francia的因子分解理论的统一且更通用的方法。这导致了Rubio de Francia的Banach函数空间值扩张定理的改进版本,以及格Hardy–Littlewood极大算子有界性的定量证明。此外,我们使用这些欧几里得结构来构建向量值函数空间。它们具有一个很好的性质,即L2 L^2上的任何有界算子都可以扩展到这些向量值函数空间上的有界算子,这与Bochner空间的扩展问题形成了鲜明的对比。利用这些空间,我们定义了一种插值方法,该方法具有以实数和复数插值方法为模型的公式。利用我们的表示定理,我们证明了Banach空间上扇形算子的转移原理,使我们能够将扇形算子的Hilbert空间结果推广到Banach空间设置。例如,我们扩展和完善了已知的基于联合和算子值H∞H^\infty演算的R数学{R}-有界性的理论。此外,我们将Hilbert空间上H∞H^\infty-演算的有界性的经典刻画用B I P BIP、平方函数和扩张推广到Banach空间设置。此外,我们通过H∞H^\infty演算,为一大类扇形算子建立了Littlewood–Paley理论的一个版本和分数光滑的相关空间。我们的抽象设置允许我们减少对X X的几何结构的假设,例如(co)类型和UMD。最后,我们给出了扇形算子的一些复杂反例,重点讨论了在LpL^p的闭子空间上,对于1>p本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Structures and Operator Theory in Banach Spaces
We present a general method to extend results on Hilbert space operators to the Banach space setting by representing certain sets of Banach space operators Γ\Gamma on a Hilbert space. Our assumption on Γ\Gamma is expressed in terms of α\alpha-boundedness for a Euclidean structure α\alpha on the underlying Banach space XX. This notion is originally motivated by R\mathcal {R}- or γ\gamma-boundedness of sets of operators, but for example any operator ideal from the Euclidean space ℓn2\ell ^2_n to XX defines such a structure. Therefore, our method is quite flexible. Conversely we show that Γ\Gamma has to be α\alpha-bounded for some Euclidean structure α\alpha to be representable on a Hilbert space.
By choosing the Euclidean structure α\alpha accordingly, we get a unified and more general approach to the Kwapień–Maurey factorization theorem and the factorization theory of Maurey, Nikišin and Rubio de Francia. This leads to an improved version of the Banach function space-valued extension theorem of Rubio de Francia and a quantitative proof of the boundedness of the lattice Hardy–Littlewood maximal operator. Furthermore, we use these Euclidean structures to build vector-valued function spaces. These enjoy the nice property that any bounded operator on L2L^2 extends to a bounded operator on these vector-valued function spaces, which is in stark contrast to the extension problem for Bochner spaces. With these spaces we define an interpolation method, which has formulations modelled after both the real and the complex interpolation method.
Using our representation theorem, we prove a transference principle for sectorial operators on a Banach space, enabling us to extend Hilbert space results for sectorial operators to the Banach space setting. We for example extend and refine the known theory based on R\mathcal {R}-boundedness for the joint and operator-valued H∞H^\infty-calculus. Moreover, we extend the classical characterization of the boundedness of the H∞H^\infty-calculus on Hilbert spaces in terms of BIPBIP, square functions and dilations to the Banach space setting. Furthermore we establish, via the H∞H^\infty-calculus, a version of Littlewood–Paley theory and associated spaces of fractional smoothness for a rather large class of sectorial operators. Our abstract setup allows us to reduce assumptions on the geometry of XX, such as (co)type and UMD. We conclude with some sophisticated counterexamples for sectorial operators, with as a highlight the construction of a sectorial operator of angle 00 on a closed subspace of LpL^p for 1>p