Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. K. Duong, N. Nouaili, H. Zaag
{"title":"Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters","authors":"G. K. Duong, N. Nouaili, H. Zaag","doi":"10.1090/memo/1411","DOIUrl":null,"url":null,"abstract":"We construct a solution for the Complex Ginzburg-Landau (CGL) equation in a general critical case, which blows up in finite time \n\n \n T\n T\n \n\n only at one blow-up point. We also give a sharp description of its profile. In the first part, we formally construct a blow-up solution. In the second part we give the rigorous proof. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows to prove the stability of the constructed solution. We would like to mention that the asymptotic profile of our solution is different from previously known profiles for CGL or for the semilinear heat equation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

We construct a solution for the Complex Ginzburg-Landau (CGL) equation in a general critical case, which blows up in finite time T T only at one blow-up point. We also give a sharp description of its profile. In the first part, we formally construct a blow-up solution. In the second part we give the rigorous proof. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows to prove the stability of the constructed solution. We would like to mention that the asymptotic profile of our solution is different from previously known profiles for CGL or for the semilinear heat equation.
具有临界参数的复Ginzburg-Landau方程爆破解的构造
构造了一般临界情况下的复Ginzburg-Landau (CGL)方程的解,该方程在有限时间内只在一个爆炸点爆炸。我们还对其轮廓进行了清晰的描述。在第一部分中,我们正式构造了一个放大解。第二部分给出了严格的证明。证明依赖于将问题简化为有限维问题,并利用指标论得出结论。用爆破点和爆破时间来解释有限维问题的参数,可以证明构造解的稳定性。我们想提到的是,我们的解的渐近轮廓不同于以前已知的CGL或半线性热方程的轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信