{"title":"Ergodicity of Markov Processes via Nonstandard Analysis","authors":"Haosui Duanmu, J. Rosenthal, W. Weiss","doi":"10.1090/memo/1342","DOIUrl":"https://doi.org/10.1090/memo/1342","url":null,"abstract":"The Markov chain ergodic theorem is well-understood if either the time-line or the state space is discrete. However, there does not exist a very clear result for general state space continuous-time Markov processes. Using methods from mathematical logic and nonstandard analysis, we introduce a class of hyperfinite Markov processes-namely, general Markov processes which behave like finite state space discrete-time Markov processes. We show that, under moderate conditions, the transition probability of hyperfinite Markov processes align with the transition probability of standard Markov processes. The Markov chain ergodic theorem for hyperfinite Markov processes will then imply the Markov chain ergodic theorem for general state space continuous-time Markov processes.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43809879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum and improvements to “Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations”, and its consequences","authors":"G. Fragnelli, Dimitri Mugnai","doi":"10.1090/memo/1332","DOIUrl":"https://doi.org/10.1090/memo/1332","url":null,"abstract":"This paper is a corrigendum of one hypothesis introduced in Mem. Amer. Math. Soc. 242 (2016), no. 1146, and used again in J. Differential Equations 260 (2016), pp. 1314–1371 and Adv. Nonlinear Anal. 6 (2017), pp. 61–84]. We give here the corrected proofs of the concerned results, improving most of them.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42212631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter
{"title":"Model theory of 𝐶*-algebras","authors":"I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter","doi":"10.1090/memo/1324","DOIUrl":"https://doi.org/10.1090/memo/1324","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"19 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60558747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Galois and cleft monoidal cowreaths. Applications","authors":"D. Bulacu, B. Torrecillas","doi":"10.1090/memo/1322","DOIUrl":"https://doi.org/10.1090/memo/1322","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type","authors":"David A. Craven","doi":"10.1090/memo/1434","DOIUrl":"https://doi.org/10.1090/memo/1434","url":null,"abstract":"<p>We study embeddings of groups of Lie type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> into exceptional algebraic groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the same characteristic. We exclude the case where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is of type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">P</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">S</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">L</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {PSL}_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is <italic>Lie primitive</italic> if it is not contained in any proper, positive-dimensional subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>With a few possible exceptions, we prove that there are no Lie primitive subgroups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41510240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 2D compressible Euler equations in\u0000 bounded impermeable domains with corners","authors":"P. Godin","doi":"10.1090/MEMO/1313","DOIUrl":"https://doi.org/10.1090/MEMO/1313","url":null,"abstract":"","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"269 1","pages":"0-0"},"PeriodicalIF":1.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60559126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}