Ergodicity of Markov Processes via Nonstandard Analysis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haosui Duanmu, J. Rosenthal, W. Weiss
{"title":"Ergodicity of Markov Processes via Nonstandard Analysis","authors":"Haosui Duanmu, J. Rosenthal, W. Weiss","doi":"10.1090/memo/1342","DOIUrl":null,"url":null,"abstract":"The Markov chain ergodic theorem is well-understood if either the time-line or the state space is discrete. However, there does not exist a very clear result for general state space continuous-time Markov processes. Using methods from mathematical logic and nonstandard analysis, we introduce a class of hyperfinite Markov processes-namely, general Markov processes which behave like finite state space discrete-time Markov processes. We show that, under moderate conditions, the transition probability of hyperfinite Markov processes align with the transition probability of standard Markov processes. The Markov chain ergodic theorem for hyperfinite Markov processes will then imply the Markov chain ergodic theorem for general state space continuous-time Markov processes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

Abstract

The Markov chain ergodic theorem is well-understood if either the time-line or the state space is discrete. However, there does not exist a very clear result for general state space continuous-time Markov processes. Using methods from mathematical logic and nonstandard analysis, we introduce a class of hyperfinite Markov processes-namely, general Markov processes which behave like finite state space discrete-time Markov processes. We show that, under moderate conditions, the transition probability of hyperfinite Markov processes align with the transition probability of standard Markov processes. The Markov chain ergodic theorem for hyperfinite Markov processes will then imply the Markov chain ergodic theorem for general state space continuous-time Markov processes.
基于非标准分析的马尔可夫过程遍历性
如果时间线或状态空间是离散的,则马尔可夫链遍历定理是很容易理解的。然而,对于一般状态空间连续时间马尔可夫过程,并没有一个非常明确的结果。利用数理逻辑和非标准分析的方法,引入了一类具有有限状态空间离散马尔可夫过程性质的超有限马尔可夫过程,即一般马尔可夫过程。我们证明了在适度条件下,超有限马尔可夫过程的转移概率与标准马尔可夫过程的转移概率是一致的。超有限马尔可夫过程的马尔可夫链遍历定理将推导出一般状态空间连续马尔可夫过程的马尔可夫链遍历定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信