Jan O. Kleppe, R. Mir'o-Roig
求助PDF
{"title":"行列式格式的变形与无障碍","authors":"Jan O. Kleppe, R. Mir'o-Roig","doi":"10.1090/memo/1418","DOIUrl":null,"url":null,"abstract":"<p>A closed subscheme <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X subset-of double-struck upper P Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X\\subset \\mathbb {P}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is said to be <italic>determinantal</italic> if its homogeneous saturated ideal can be generated by the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s times s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s\\times s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> minors of a homogeneous <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p times q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\times q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> matrix satisfying <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis p minus s plus 1 right-parenthesis left-parenthesis q minus s plus 1 right-parenthesis equals n minus dimension upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>dim</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(p-s+1)(q-s+1)=n - \\dim X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and it is said to be <italic>standard determinantal</italic> if, in addition, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals min left-parenthesis p comma q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo movablelimits=\"true\" form=\"prefix\">min</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s=\\min (p,q)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Given integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 less-than-or-equal-to a 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to a Subscript t plus c minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>t</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a_1\\le a_2\\le \\cdots \\le a_{t+c-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b 1 less-than-or-equal-to b 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to b Subscript t\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b_1\\le b_2 \\le \\cdots \\le b_t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we consider <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t times left-parenthesis t plus c minus 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\times (t+c-1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> matrices <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A equals left-parenthesis f Subscript i j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>f</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}=(f_{ij})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with entries homogeneous forms of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript j Baseline minus b Subscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a_j-b_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and we denote by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis With bar\">\n <mml:semantics>\n <mml:mover>\n <mml:mrow>\n <mml:mi>W</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:munder>\n <mml:mi>b</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:munder>\n <mml:mi>a</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline {W(\\underline {b};\\underline {a};r)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the closure of the locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis subset-of upper H i l b Superscript p left-parenthesis t right-parenthesis Baseline left-parenthesis double-struck upper P Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>W</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:munder>\n <mml:mi>b</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:munder>\n <mml:mi>a</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>H</mml:mi>\n <mml:mi>i</mml:mi>\n <mml:mi>l</mml:mi>\n <mml:msup>\n <mml:mi>b</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">W(\\underline {b};\\underline {a};r)\\subset Hilb^{p(t)}(\\mathbb {P}^{n})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of determinantal schemes defined by the vanishing of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deformation and Unobstructedness of Determinantal Schemes\",\"authors\":\"Jan O. Kleppe, R. Mir'o-Roig\",\"doi\":\"10.1090/memo/1418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A closed subscheme <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X subset-of double-struck upper P Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X\\\\subset \\\\mathbb {P}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is said to be <italic>determinantal</italic> if its homogeneous saturated ideal can be generated by the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s times s\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>s</mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mi>s</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">s\\\\times s</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> minors of a homogeneous <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p times q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p\\\\times q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> matrix satisfying <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis p minus s plus 1 right-parenthesis left-parenthesis q minus s plus 1 right-parenthesis equals n minus dimension upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>s</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>s</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>dim</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>X</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(p-s+1)(q-s+1)=n - \\\\dim X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and it is said to be <italic>standard determinantal</italic> if, in addition, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s equals min left-parenthesis p comma q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>s</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">min</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">s=\\\\min (p,q)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Given integers <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 1 less-than-or-equal-to a 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to a Subscript t plus c minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>t</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>c</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_1\\\\le a_2\\\\le \\\\cdots \\\\le a_{t+c-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b 1 less-than-or-equal-to b 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to b Subscript t\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>b</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>b</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>b</mml:mi>\\n <mml:mi>t</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">b_1\\\\le b_2 \\\\le \\\\cdots \\\\le b_t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> we consider <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t times left-parenthesis t plus c minus 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>c</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\times (t+c-1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> matrices <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A equals left-parenthesis f Subscript i j Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>f</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mi>j</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}=(f_{ij})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with entries homogeneous forms of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a Subscript j Baseline minus b Subscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mi>j</mml:mi>\\n </mml:msub>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:msub>\\n <mml:mi>b</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_j-b_i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and we denote by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis With bar\\\">\\n <mml:semantics>\\n <mml:mover>\\n <mml:mrow>\\n <mml:mi>W</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:munder>\\n <mml:mi>b</mml:mi>\\n <mml:mo>_<!-- _ --></mml:mo>\\n </mml:munder>\\n <mml:mo>;</mml:mo>\\n <mml:munder>\\n <mml:mi>a</mml:mi>\\n <mml:mo>_<!-- _ --></mml:mo>\\n </mml:munder>\\n <mml:mo>;</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo>\\n </mml:mover>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {W(\\\\underline {b};\\\\underline {a};r)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the closure of the locus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis subset-of upper H i l b Superscript p left-parenthesis t right-parenthesis Baseline left-parenthesis double-struck upper P Superscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>W</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:munder>\\n <mml:mi>b</mml:mi>\\n <mml:mo>_<!-- _ --></mml:mo>\\n </mml:munder>\\n <mml:mo>;</mml:mo>\\n <mml:munder>\\n <mml:mi>a</mml:mi>\\n <mml:mo>_<!-- _ --></mml:mo>\\n </mml:munder>\\n <mml:mo>;</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>H</mml:mi>\\n <mml:mi>i</mml:mi>\\n <mml:mi>l</mml:mi>\\n <mml:msup>\\n <mml:mi>b</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">W(\\\\underline {b};\\\\underline {a};r)\\\\subset Hilb^{p(t)}(\\\\mathbb {P}^{n})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of determinantal schemes defined by the vanishing of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1418\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1418","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
引用
批量引用