{"title":"Deformation and Unobstructedness of Determinantal Schemes","authors":"Jan O. Kleppe, R. Mir'o-Roig","doi":"10.1090/memo/1418","DOIUrl":null,"url":null,"abstract":"<p>A closed subscheme <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X subset-of double-struck upper P Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X\\subset \\mathbb {P}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is said to be <italic>determinantal</italic> if its homogeneous saturated ideal can be generated by the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s times s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s\\times s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> minors of a homogeneous <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p times q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\times q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> matrix satisfying <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis p minus s plus 1 right-parenthesis left-parenthesis q minus s plus 1 right-parenthesis equals n minus dimension upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>dim</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(p-s+1)(q-s+1)=n - \\dim X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and it is said to be <italic>standard determinantal</italic> if, in addition, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals min left-parenthesis p comma q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo movablelimits=\"true\" form=\"prefix\">min</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s=\\min (p,q)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Given integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 less-than-or-equal-to a 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to a Subscript t plus c minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>t</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a_1\\le a_2\\le \\cdots \\le a_{t+c-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b 1 less-than-or-equal-to b 2 less-than-or-equal-to midline-horizontal-ellipsis less-than-or-equal-to b Subscript t\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b_1\\le b_2 \\le \\cdots \\le b_t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we consider <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t times left-parenthesis t plus c minus 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\times (t+c-1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> matrices <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A equals left-parenthesis f Subscript i j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>f</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}=(f_{ij})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with entries homogeneous forms of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript j Baseline minus b Subscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a_j-b_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and we denote by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis With bar\">\n <mml:semantics>\n <mml:mover>\n <mml:mrow>\n <mml:mi>W</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:munder>\n <mml:mi>b</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:munder>\n <mml:mi>a</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline {W(\\underline {b};\\underline {a};r)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the closure of the locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W left-parenthesis b underbar semicolon a underbar semicolon r right-parenthesis subset-of upper H i l b Superscript p left-parenthesis t right-parenthesis Baseline left-parenthesis double-struck upper P Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>W</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:munder>\n <mml:mi>b</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:munder>\n <mml:mi>a</mml:mi>\n <mml:mo>_<!-- _ --></mml:mo>\n </mml:munder>\n <mml:mo>;</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>H</mml:mi>\n <mml:mi>i</mml:mi>\n <mml:mi>l</mml:mi>\n <mml:msup>\n <mml:mi>b</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">W(\\underline {b};\\underline {a};r)\\subset Hilb^{p(t)}(\\mathbb {P}^{n})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of determinantal schemes defined by the vanishing of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1418","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
A closed subscheme X⊂PnX\subset \mathbb {P}^n is said to be determinantal if its homogeneous saturated ideal can be generated by the s×ss\times s minors of a homogeneous p×qp\times q matrix satisfying (p−s+1)(q−s+1)=n−dimX(p-s+1)(q-s+1)=n - \dim X and it is said to be standard determinantal if, in addition, s=min(p,q)s=\min (p,q). Given integers a1≤a2≤⋯≤at+c−1a_1\le a_2\le \cdots \le a_{t+c-1} and b1≤b2≤⋯≤btb_1\le b_2 \le \cdots \le b_t we consider t×(t+c−1)t\times (t+c-1) matrices A=(fij)\mathcal {A}=(f_{ij}) with entries homogeneous forms of degree aj−bia_j-b_i and we denote by W(b_;a_;r)¯\overline {W(\underline {b};\underline {a};r)} the closure of the locus W(b_;a_;r)⊂Hilbp(t)(Pn)W(\underline {b};\underline {a};r)\subset Hilb^{p(t)}(\mathbb {P}^{n}) of determinantal schemes defined by the vanishing of the
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.