{"title":"李型例外群的中秩李基元和极大子群","authors":"David A. Craven","doi":"10.1090/memo/1434","DOIUrl":null,"url":null,"abstract":"<p>We study embeddings of groups of Lie type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> into exceptional algebraic groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the same characteristic. We exclude the case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <italic>Lie primitive</italic> if it is not contained in any proper, positive-dimensional subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>With a few possible exceptions, we prove that there are no Lie primitive subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with the conditions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> given above. The exceptions are for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> one of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 3 Baseline left-parenthesis 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_3(3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSU}_3(3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript 3 Baseline left-parenthesis 4 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_3(4)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 4 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSU}_3(4)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 8 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>8</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSU}_3(8)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper U Subscript 4 Baseline left-parenthesis 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSU}_4(2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal p Subscript 4 Baseline left-parenthesis 2 right-parenthesis prime\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">p</mml:mi>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>′</mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type\",\"authors\":\"David A. Craven\",\"doi\":\"10.1090/memo/1434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study embeddings of groups of Lie type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> into exceptional algebraic groups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the same characteristic. We exclude the case where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is of type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. A subgroup of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is <italic>Lie primitive</italic> if it is not contained in any proper, positive-dimensional subgroup of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>With a few possible exceptions, we prove that there are no Lie primitive subgroups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, with the conditions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> given above. The exceptions are for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> one of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 3 Baseline left-parenthesis 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_3(3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">U</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSU}_3(3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript 3 Baseline left-parenthesis 4 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>4</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_3(4)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 4 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">U</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>4</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSU}_3(4)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper U Subscript 3 Baseline left-parenthesis 8 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">U</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>8</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSU}_3(8)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper U Subscript 4 Baseline left-parenthesis 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">U</mml:mi>\\n </mml:mrow>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSU}_4(2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal p Subscript 4 Baseline left-parenthesis 2 right-parenthesis prime\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">P</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">S</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">p</mml:mi>\\n </mml:mrow>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>′</mml:mo>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
摘要
我们研究了特征p p中H H李型群嵌入到相同特征的例外代数群G\mathbf{G}中的问题。我们排除了H H是P S L 2 \ mathrm类型的情况{PSL}_2。如果G\mathbf{G}的子群不包含在G\mathbf{G{的任何正维子群中,则它是李原子群。除了几个可能的例外,我们证明了在G\math bf{}中不存在李原子群H H,并且给出了关于H H和G\math BF{G}的条件。例外情况是P S L 3(3)\mathrm的H H之一{PSL}_3(3) ,P S U 3(3)\数学{PSU}_3(3) ,P S L 3(4)\数学{PSL}_3(4) ,P S U 3(4)\数学{PSU}_3(4) ,P S U 3(8)\数学{PSU}_3(8) ,P S U 4(2)\数学{PSU}_4(2) ,P S P 4(2)′\数学{
On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type
We study embeddings of groups of Lie type HH in characteristic pp into exceptional algebraic groups G\mathbf {G} of the same characteristic. We exclude the case where HH is of type PSL2\mathrm {PSL}_2. A subgroup of G\mathbf {G} is Lie primitive if it is not contained in any proper, positive-dimensional subgroup of G\mathbf {G}.
With a few possible exceptions, we prove that there are no Lie primitive subgroups HH in G\mathbf {G}, with the conditions on HH and G\mathbf {G} given above. The exceptions are for HH one of PSL3(3)\mathrm {PSL}_3(3), PSU3(3)\mathrm {PSU}_3(3), PSL3(4)\mathrm {PSL}_3(4), PSU3(4)\mathrm {PSU}_3(4), PSU3(8)\mathrm {PSU}_3(8), PSU4(2)\mathrm {PSU}_4(2), PSp4(2)′\mathrm {