范畴和(部分)半群中理想的同余格

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. East, N. Ruškuc
{"title":"范畴和(部分)半群中理想的同余格","authors":"J. East, N. Ruškuc","doi":"10.1090/memo/1408","DOIUrl":null,"url":null,"abstract":"This monograph presents a unified framework for determining the congruences on a number of monoids and categories of transformations, diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley–Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid categories.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Congruence Lattices of Ideals in Categories and (Partial) Semigroups\",\"authors\":\"J. East, N. Ruškuc\",\"doi\":\"10.1090/memo/1408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This monograph presents a unified framework for determining the congruences on a number of monoids and categories of transformations, diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley–Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid categories.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11

摘要

这个专著提出了一个统一的框架,以确定在一些单群和变换,图,矩阵和辫子的类别,并在所有的理想上的同余。关键的理论进展是将若干正规子群格相互叠加,从而依次构建理想链的同余格的迭代过程。这适用于以下几个特定类别:转换;顺序/方向保持/反转转换;分区;平面/环形分区;Brauer, Temperley-Lieb和Jones分区;线性和射影线性变换;还有部分辫子。需要特别考虑某些小的理想,以及线性和部分编织类别的技术上更复杂的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruence Lattices of Ideals in Categories and (Partial) Semigroups
This monograph presents a unified framework for determining the congruences on a number of monoids and categories of transformations, diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley–Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信