传播阶地与反应扩散方程前解的动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. Polácik
{"title":"传播阶地与反应扩散方程前解的动力学","authors":"P. Polácik","doi":"10.1090/memo/1278","DOIUrl":null,"url":null,"abstract":"We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Propagating Terraces and the Dynamics of\\n Front-Like Solutions of Reaction-Diffusion Equations\\n on ℝ\",\"authors\":\"P. Polácik\",\"doi\":\"10.1090/memo/1278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 36

摘要

我们考虑形式为ut=uxx+f(u),x∈R,t>0的半线性抛物型方程,其中f是C1函数。假设0和γ>0是常稳态,我们研究了类锋解的大时间行为,即初始值u(x,0)对于x≈-∞在γ附近,对于x≠∞在0附近的解u。如果稳态0和γ都是稳定的,我们的主要定理表明,在很大程度上,u(·,t)的图任意靠近传播平台(堆叠的行进字体系统)。我们证明了这个结果,而不需要u(·,0)的单调性或f的零的非一般性。还考虑了稳态0,γ中的一个或两个不稳定的情况。作为我们定理的推论,我们证明了所有的类锋解都是拟收敛的:它们关于局部一致收敛的ω-极限集由稳态组成。在我们的证明中,我们使用了相平面分析、交集比较(或,零个数)自变量,以及涉及所讨论的解的空间轨迹{(u(x,t),ux(x,t)):x∈R},t>0的几何方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on ℝ
We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信