自对偶Chern-Simons-Schrödinger方程的伪共形Blow-Up解:存在性、唯一性和不稳定性

IF 2 4区 数学 Q1 MATHEMATICS
Kihyun Kim, Soonsik Kwon
{"title":"自对偶Chern-Simons-Schrödinger方程的伪共形Blow-Up解:存在性、唯一性和不稳定性","authors":"Kihyun Kim, Soonsik Kwon","doi":"10.1090/memo/1409","DOIUrl":null,"url":null,"abstract":"<p>We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-critical NLS. In this work, we consider pseudoconformal blow-up solutions under <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariance, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with given asymptotic profile <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">z^{\\ast }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket u left-parenthesis t comma r right-parenthesis minus StartFraction 1 Over StartAbsoluteValue t EndAbsoluteValue EndFraction upper Q left-parenthesis StartFraction r Over StartAbsoluteValue t EndAbsoluteValue EndFraction right-parenthesis e Superscript minus i StartFraction r squared Over 4 StartAbsoluteValue t EndAbsoluteValue EndFraction Baseline right-bracket e Superscript i m theta Baseline right-arrow z Superscript asterisk Baseline in upper H Superscript 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">[</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n <mml:mi>Q</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac>\n <mml:mi>r</mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>i</mml:mi>\n <mml:mfrac>\n <mml:msup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mrow>\n <mml:mn>4</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">]</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mspace width=\"2em\" />\n <mml:mtext>in </mml:mtext>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Big [u(t,r)-\\frac {1}{|t|}Q\\Big (\\frac {r}{|t|}\\Big )e^{-i\\frac {r^{2}}{4|t|}}\\Big ]e^{im\\theta }\\to z^{\\ast }\\qquad \\text {in }H^{1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow 0 Superscript minus\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msup>\n <mml:mn>0</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\to 0^{-}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q left-parenthesis r right-parenthesis e Superscript i m theta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Q</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mi>m</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q(r)e^{im\\theta }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a static solution. Secondly, we show that such blow-up solutions are unique in a suitable class. Lastly, yet most importantly, we exhibit an instability mechanism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We construct a continuous family of solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Superscript left-parenthesis eta right-parenthesis\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">u^{(\\eta )}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 less-than-or-equal-to eta much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0\\leq \\eta \\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Superscript left-parenthesis 0 right-parenthesis Baseline equals u\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo>=</mml:mo>\n ","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability\",\"authors\":\"Kihyun Kim, Soonsik Kwon\",\"doi\":\"10.1090/memo/1409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^{2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-critical NLS. In this work, we consider pseudoconformal blow-up solutions under <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\">\\n <mml:semantics>\\n <mml:mi>m</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-equivariance, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>m</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m\\\\geq 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u\\\">\\n <mml:semantics>\\n <mml:mi>u</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with given asymptotic profile <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"z Superscript asterisk\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>z</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">z^{\\\\ast }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>: <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket u left-parenthesis t comma r right-parenthesis minus StartFraction 1 Over StartAbsoluteValue t EndAbsoluteValue EndFraction upper Q left-parenthesis StartFraction r Over StartAbsoluteValue t EndAbsoluteValue EndFraction right-parenthesis e Superscript minus i StartFraction r squared Over 4 StartAbsoluteValue t EndAbsoluteValue EndFraction Baseline right-bracket e Superscript i m theta Baseline right-arrow z Superscript asterisk Baseline in upper H Superscript 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">[</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mi>Q</mml:mi>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">(</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mfrac>\\n <mml:mi>r</mml:mi>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:msup>\\n <mml:mi>e</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>i</mml:mi>\\n <mml:mfrac>\\n <mml:msup>\\n <mml:mi>r</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mrow>\\n <mml:mn>4</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo maxsize=\\\"1.623em\\\" minsize=\\\"1.623em\\\">]</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:msup>\\n <mml:mi>e</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mi>m</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:msup>\\n <mml:mi>z</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mspace width=\\\"2em\\\" />\\n <mml:mtext>in </mml:mtext>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Big [u(t,r)-\\\\frac {1}{|t|}Q\\\\Big (\\\\frac {r}{|t|}\\\\Big )e^{-i\\\\frac {r^{2}}{4|t|}}\\\\Big ]e^{im\\\\theta }\\\\to z^{\\\\ast }\\\\qquad \\\\text {in }H^{1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t right-arrow 0 Superscript minus\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:msup>\\n <mml:mn>0</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\to 0^{-}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q left-parenthesis r right-parenthesis e Superscript i m theta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Q</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mi>e</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mi>m</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Q(r)e^{im\\\\theta }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a static solution. Secondly, we show that such blow-up solutions are unique in a suitable class. Lastly, yet most importantly, we exhibit an instability mechanism of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u\\\">\\n <mml:semantics>\\n <mml:mi>u</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We construct a continuous family of solutions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u Superscript left-parenthesis eta right-parenthesis\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>η<!-- η --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u^{(\\\\eta )}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 less-than-or-equal-to eta much-less-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>η<!-- η --></mml:mi>\\n <mml:mo>≪<!-- ≪ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0\\\\leq \\\\eta \\\\ll 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u Superscript left-parenthesis 0 right-parenthesis Baseline equals u\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>=</mml:mo>\\n \",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1409\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑自对偶Chern-Simons-Schrödinger方程(CSS),也称为规范非线性薛定谔方程(NLS)。CSS是L2L^{2}-临界的,包含孤立子,并且具有伪共形对称性。这些特征类似于L2L^{2}-临界NLS。在这项工作中,我们考虑m-等变,m≥1m\geq1下的伪共形爆破解。我们的结果有三个方面。首先,我们构造了一个具有给定渐近轮廓z*z^{\ast}的伪共形爆破解u:\[[u(t,r)−1|t|Q(r|t|)e−i r 2 4|t|]e i mθ→ H1\Big[u(t,r)-\frac{1}{|t|}Q\Big→ 0−t\到0^{-},其中Q(r)e i mθQ(r。其次,我们证明了这种爆破解决方案在合适的类别中是独特的。最后,但最重要的是,我们展示了u u的不稳定性机制。我们构造了一个连续的解族u(η)u^{(\eta)},0≤η≪1 0\leq\eta\lll 1,使得u(0)=
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability

We consider the self-dual Chern-Simons-Schrödinger equation (CSS), also known as a gauged nonlinear Schrödinger equation (NLS). CSS is L 2 L^{2} -critical, admits solitons, and has the pseudoconformal symmetry. These features are similar to the L 2 L^{2} -critical NLS. In this work, we consider pseudoconformal blow-up solutions under m m -equivariance, m 1 m\geq 1 . Our result is threefold. Firstly, we construct a pseudoconformal blow-up solution u u with given asymptotic profile z z^{\ast } : \[ [ u ( t , r ) 1 | t | Q ( r | t | ) e i r 2 4 | t | ] e i m θ z in  H 1 \Big [u(t,r)-\frac {1}{|t|}Q\Big (\frac {r}{|t|}\Big )e^{-i\frac {r^{2}}{4|t|}}\Big ]e^{im\theta }\to z^{\ast }\qquad \text {in }H^{1} \] as t 0 t\to 0^{-} , where Q ( r ) e i m θ Q(r)e^{im\theta } is a static solution. Secondly, we show that such blow-up solutions are unique in a suitable class. Lastly, yet most importantly, we exhibit an instability mechanism of u u . We construct a continuous family of solutions u ( η ) u^{(\eta )} , 0 η 1 0\leq \eta \ll 1 , such that u ( 0 ) =

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信