{"title":"Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation","authors":"M. Pillai","doi":"10.1090/memo/1407","DOIUrl":null,"url":null,"abstract":"<p>We consider the wave maps problem with domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 2 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and target <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with polar angle equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>arctan</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{1}(r) = 2 \\arctan (r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }(r) = Q_{1}(r \\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> family. More precisely, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>100</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _{0,0,b} \\in C^{\\infty }([100,\\infty ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying, for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{l}, C_{m,k}>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\">\n <mml:semantics>\n <mml:mrow>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:msup>\n <mml:mi>log</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mfrac>\n ","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
Abstract
We consider the wave maps problem with domain R2+1\mathbb {R}^{2+1} and target S2\mathbb {S}^{2} in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from R2\mathbb {R}^{2} to S2\mathbb {S}^{2}, with polar angle equal to Q1(r)=2arctan(r)Q_{1}(r) = 2 \arctan (r). By applying the scaling symmetry of the equation, Qλ(r)=Q1(rλ)Q_{\lambda }(r) = Q_{1}(r \lambda ) is also a harmonic map, and the family of all such QλQ_{\lambda } are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the QλQ_{\lambda } family. More precisely, for b>0b>0, and for all λ0,0,b∈C∞([100,∞))\lambda _{0,0,b} \in C^{\infty }([100,\infty )) satisfying, for some Cl,Cm,k>0C_{l}, C_{m,k}>0, Cllogb(t)≤λ0,0,b(t)≤