Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation

IF 2 4区 数学 Q1 MATHEMATICS
M. Pillai
{"title":"Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation","authors":"M. Pillai","doi":"10.1090/memo/1407","DOIUrl":null,"url":null,"abstract":"<p>We consider the wave maps problem with domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 2 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and target <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">S</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with polar angle equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q 1 left-parenthesis r right-parenthesis equals 2 arc tangent left-parenthesis r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>arctan</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{1}(r) = 2 \\arctan (r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By applying the scaling symmetry of the equation, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda Baseline left-parenthesis r right-parenthesis equals upper Q 1 left-parenthesis r lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }(r) = Q_{1}(r \\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also a harmonic map, and the family of all such <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">Q_{\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> family. More precisely, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript 0 comma 0 comma b Baseline element-of upper C Superscript normal infinity Baseline left-parenthesis left-bracket 100 comma normal infinity right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>100</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _{0,0,b} \\in C^{\\infty }([100,\\infty ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying, for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript l Baseline comma upper C Subscript m comma k Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{l}, C_{m,k}>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction upper C Subscript l Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction less-than-or-equal-to lamda Subscript 0 comma 0 comma b Baseline left-parenthesis t right-parenthesis less-than-or-equal-to StartFraction upper C Subscript m Baseline Over log Superscript b Baseline left-parenthesis t right-parenthesis EndFraction comma StartAbsoluteValue lamda Subscript 0 comma 0 comma b Superscript left-parenthesis k right-parenthesis Baseline left-parenthesis t right-parenthesis EndAbsoluteValue less-than-or-equal-to StartFraction upper C Subscript m comma k Baseline Over t Superscript k Baseline log Superscript b plus 1 Baseline left-parenthesis t right-parenthesis EndFraction comma k greater-than-or-equal-to 1 t greater-than-or-equal-to 100\">\n <mml:semantics>\n <mml:mrow>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:msup>\n <mml:mi>log</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mfrac>\n ","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the wave maps problem with domain R 2 + 1 \mathbb {R}^{2+1} and target S 2 \mathbb {S}^{2} in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from R 2 \mathbb {R}^{2} to S 2 \mathbb {S}^{2} , with polar angle equal to Q 1 ( r ) = 2 arctan ( r ) Q_{1}(r) = 2 \arctan (r) . By applying the scaling symmetry of the equation, Q λ ( r ) = Q 1 ( r λ ) Q_{\lambda }(r) = Q_{1}(r \lambda ) is also a harmonic map, and the family of all such Q λ Q_{\lambda } are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the Q λ Q_{\lambda } family. More precisely, for b > 0 b>0 , and for all λ 0 , 0 , b C ( [ 100 , ) ) \lambda _{0,0,b} \in C^{\infty }([100,\infty )) satisfying, for some C l , C m , k > 0 C_{l}, C_{m,k}>0 , C l log b ( t ) λ 0 , 0 , b ( t )

能量临界波映射方程的无限时间爆破解
我们考虑了域R2+1\mathbb{R}^{2+1}和目标S2\mathbb{S}^{2}在1-等变拓扑度1设置中的波映射问题。在这种情况下,我们记得孤立子是从R2\mathbb{R}^{2}到S2\mathbb{S}^}的调和映射,极角等于Q 1(R)=2 arctan⁡ (r)Q_{1}(r)=2\arctan(r)。通过应用方程的标度对称性,Qλ(r)=Q 1(rλ)Q_,和所有这样的QλQ_{\lambda}的族是有限能量、1-等变拓扑一阶映射中调和映射能量的唯一极小值。在这项工作中,我们构造了沿QλQ_{\lambda}族的无限时间爆破解。更精确地说,对于b>0 b>0,以及对于所有λ0,0,b∈C∞([100,∞))\λ_{0,0,b}\在C^{\infty}([100>0,C l日志b⁡ (t)≤λ0,0,b(t)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信