有限群中的自同构轨道和元素阶:几乎可解性和Monster

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexander Bors, Michael Giudici, C. Praeger
{"title":"有限群中的自同构轨道和元素阶:几乎可解性和Monster","authors":"Alexander Bors, Michael Giudici, C. Praeger","doi":"10.1090/memo/1427","DOIUrl":null,"url":null,"abstract":"<p>For a finite group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we denote by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega (G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>A</mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Aut(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-orbits on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the number of distinct element orders in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper, we are primarily concerned with the two quantities <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German d left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis minus o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">d</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {d}(G)≔\\omega (G)-o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German q left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis slash o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {q}(G)≔\\omega (G)/o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, each of which may be viewed as a measure for how far <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is from being an AT-group in the sense of Zhang (that is, a group with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega left-parenthesis upper G right-parenthesis equals o left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega (G)=o(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). We show that the index <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper G colon upper R a d left-parenthesis upper G right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|G:Rad(G)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the soluble radical <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R a d left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Rad(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be bounded from above both by a function in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German d left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">d</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {d}(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and by a function in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German q left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {q}(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o left-parenthesis upper R a d left-parenthesis upper G right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">o(Rad(G))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster\",\"authors\":\"Alexander Bors, Michael Giudici, C. Praeger\",\"doi\":\"10.1090/memo/1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a finite group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we denote by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega (G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the number of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A u t left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>A</mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Aut(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-orbits on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"o left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">o(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the number of distinct element orders in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In this paper, we are primarily concerned with the two quantities <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German d left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis minus o left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">d</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {d}(G)≔\\\\omega (G)-o(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German q left-parenthesis upper G right-parenthesis colon-equal omega left-parenthesis upper G right-parenthesis slash o left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">q</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {q}(G)≔\\\\omega (G)/o(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, each of which may be viewed as a measure for how far <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is from being an AT-group in the sense of Zhang (that is, a group with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega left-parenthesis upper G right-parenthesis equals o left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega (G)=o(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). We show that the index <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper G colon upper R a d left-parenthesis upper G right-parenthesis EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mi>a</mml:mi>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|G:Rad(G)|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the soluble radical <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R a d left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>R</mml:mi>\\n <mml:mi>a</mml:mi>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Rad(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be bounded from above both by a function in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German d left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">d</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {d}(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and by a function in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German q left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">q</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {q}(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"o left-parenthesis upper R a d left-parenthesis upper G right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>R</mml:mi>\\n <mml:mi>a</mml:mi>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">o(Rad(G))</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

对于有限群G G,我们用ω(G)\omega(G)表示G G上a u t(G)Aut(G。在本文中,我们主要关注两个量d(G)ω(G)−o(G)\mathfrak{d}(G)≔\omega(G)-o(G)和q(G)(G) ,它们中的每一个都可以被视为G离张意义上的AT群(即ω(G)=o(G)\ω(G。我们证明了G的可溶性自由基R a d(G)Rad(G)的指数|G:R a dq(G)\mathfrak{q}(G)和o(R a d(G))o(Rad(G)。我们还获得了Fischer Griess Monster群M M的一个奇怪的定量刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster

For a finite group G G , we denote by ω ( G ) \omega (G) the number of A u t ( G ) Aut(G) -orbits on G G , and by o ( G ) o(G) the number of distinct element orders in G G . In this paper, we are primarily concerned with the two quantities d ( G ) ω ( G ) o ( G ) \mathfrak {d}(G)≔\omega (G)-o(G) and q ( G ) ω ( G ) / o ( G ) \mathfrak {q}(G)≔\omega (G)/o(G) , each of which may be viewed as a measure for how far G G is from being an AT-group in the sense of Zhang (that is, a group with ω ( G ) = o ( G ) \omega (G)=o(G) ). We show that the index | G : R a d ( G ) | |G:Rad(G)| of the soluble radical R a d ( G ) Rad(G) of G G can be bounded from above both by a function in d ( G ) \mathfrak {d}(G) and by a function in q ( G ) \mathfrak {q}(G) and o ( R a d ( G ) ) o(Rad(G)) . We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group M M .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信