{"title":"One-dimensional empirical measures, order\n statistics, and Kantorovich transport\n distances","authors":"S. Bobkov, M. Ledoux","doi":"10.1090/memo/1259","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of rates of convergence of the empirical measures μn = 1 n ∑n k=1 δXk , n ≥ 1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn, μ)) or [ E(W p p (μn, μ)) ]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1 √ n to slower rates, and both lower and upperbounds on E(Wp(μn, μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, logconcavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1259","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 221
Abstract
This work is devoted to the study of rates of convergence of the empirical measures μn = 1 n ∑n k=1 δXk , n ≥ 1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn, μ)) or [ E(W p p (μn, μ)) ]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1 √ n to slower rates, and both lower and upperbounds on E(Wp(μn, μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, logconcavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.