Advances in Calculus of Variations最新文献

筛选
英文 中文
Non-local BV functions and a denoising model with L 1 fidelity 非局部 BV 函数和保真度为 L 1 的去噪模型
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-30 DOI: 10.1515/acv-2023-0082
Konstantinos Bessas, Giorgio Stefani
{"title":"Non-local BV functions and a denoising model with L 1 fidelity","authors":"Konstantinos Bessas, Giorgio Stefani","doi":"10.1515/acv-2023-0082","DOIUrl":"https://doi.org/10.1515/acv-2023-0082","url":null,"abstract":"We study a general total variation denoising model with weighted <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel <jats:italic>K</jats:italic>, and the approximation term is given by the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> norm with respect to a non-singular measure with positively lower-bounded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0328.png\" /> <jats:tex-math>{L^{infty}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> density. We provide a detailed analysis of the space of non-local <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0210.png\" /> <jats:tex-math>mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions with finite total <jats:italic>K</jats:italic>-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the <jats:italic>K</jats:italic>-variation and the associated <jats:italic>K</jats:italic>-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasiconformal, Lipschitz, and BV mappings in metric spaces 度量空间中的准共形、Lipschitz 和 BV 映射
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-12 DOI: 10.1515/acv-2022-0071
Panu Lahti
{"title":"Quasiconformal, Lipschitz, and BV mappings in metric spaces","authors":"Panu Lahti","doi":"10.1515/acv-2022-0071","DOIUrl":"https://doi.org/10.1515/acv-2022-0071","url":null,"abstract":"Consider a mapping &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;:&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;→&lt;/m:mo&gt; &lt;m:mi&gt;Y&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0735.png\" /&gt; &lt;jats:tex-math&gt;{fcolon Xto Y}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; between two metric measure spaces. We study generalized versions of the local Lipschitz number &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;Lip&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0649.png\" /&gt; &lt;jats:tex-math&gt;{operatorname{Lip}f}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, as well as of the distortion number &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0480.png\" /&gt; &lt;jats:tex-math&gt;{H_{f}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; that is used to define quasiconformal mappings. Using these numbers, we give sufficient conditions for &lt;jats:italic&gt;f&lt;/jats:italic&gt; being a BV mapping &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;BV&lt;/m:mi&gt; &lt;m:mi&gt;loc&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;;&lt;/m:mo&gt; &lt;m:mi&gt;Y&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0759.png\" /&gt; &lt;jats:tex-math&gt;{finmathrm{BV}_{mathrm{loc}}(X;Y)}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; or a Newton–Sobolev mapping &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;m:mi&gt;loc&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;;&lt;/m:mo&gt; &lt;m:mi&gt;Y&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0751.png\" /&gt; &lt;jats:tex-math&gt;{fin N_{mathrm{loc}}^{1,p}(X;Y)}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, with &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;∞&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized minimizing movements for the varifold Canham–Helfrich flow 变分卡纳姆-赫尔弗里希流的广义最小化运动
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-12 DOI: 10.1515/acv-2022-0056
Katharina Brazda, Martin Kružík, Ulisse Stefanelli
{"title":"Generalized minimizing movements for the varifold Canham–Helfrich flow","authors":"Katharina Brazda, Martin Kružík, Ulisse Stefanelli","doi":"10.1515/acv-2022-0056","DOIUrl":"https://doi.org/10.1515/acv-2022-0056","url":null,"abstract":"The gradient flow of the Canham–Helfrich functional is tackled via the generalized minimizing movements approach. We prove the existence of solutions in Wasserstein spaces of varifolds, as well as upper and lower diameter bounds. In the more regular setting of multiply covered <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0056_eq_0274.png\" /> <jats:tex-math>{C^{1,1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> surfaces, we provide a Li–Yau-type estimate for the Canham–Helfrich energy and prove the conservation of multiplicity along the evolution.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"25 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes 具有周期性微观结构的完全塑性板材的有效准静态演化模型:极限状态
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-11 DOI: 10.1515/acv-2023-0020
Marin Bužančić, Elisa Davoli, Igor Velčić
{"title":"Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes","authors":"Marin Bužančić, Elisa Davoli, Igor Velčić","doi":"10.1515/acv-2023-0020","DOIUrl":"https://doi.org/10.1515/acv-2023-0020","url":null,"abstract":"We identify effective models for thin, linearly elastic and perfectly plastic plates exhibiting a microstructure resulting from the periodic alternation of two elastoplastic phases. We study here both the case in which the thickness of the plate converges to zero on a much faster scale than the periodicity parameter and the opposite scenario in which homogenization occurs on a much finer scale than dimension reduction. After performing a static analysis of the problem, we show convergence of the corresponding quasistatic evolutions. The methodology relies on two-scale convergence and periodic unfolding, combined with suitable measure-disintegration results and evolutionary Γ-convergence.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian 涉及分数 p-Laplacian 的反应扩散方程全解的单调性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-10 DOI: 10.1515/acv-2022-0109
Qing Guo
{"title":"Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian","authors":"Qing Guo","doi":"10.1515/acv-2022-0109","DOIUrl":"https://doi.org/10.1515/acv-2022-0109","url":null,"abstract":"We obtain the one-dimensional symmetry and monotonicity of the entire positive solutions to some reaction-diffusion equations involving fractional &lt;jats:italic&gt;p&lt;/jats:italic&gt;-Laplacian by virtue of the sliding method. More precisely, we consider the following problem &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mo&gt;{&lt;/m:mo&gt; &lt;m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∂&lt;/m:mo&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∂&lt;/m:mo&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mo lspace=\"12.5pt\" stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mo lspace=\"12.5pt\" stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;m:mo stretch","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"4 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic analysis of single-slip crystal plasticity in the limit of vanishing thickness and rigid elasticity 厚度和刚性弹性消失极限下单滑晶塑性的渐近分析
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-10 DOI: 10.1515/acv-2023-0009
Dominik Engl, Stefan Krömer, Martin Kružík
{"title":"Asymptotic analysis of single-slip crystal plasticity in the limit of vanishing thickness and rigid elasticity","authors":"Dominik Engl, Stefan Krömer, Martin Kružík","doi":"10.1515/acv-2023-0009","DOIUrl":"https://doi.org/10.1515/acv-2023-0009","url":null,"abstract":"We perform via Γ-convergence a 2d-1d dimension reduction analysis of a single-slip elastoplastic body in large deformations. Rigid plastic and elastoplastic regimes are considered. In particular, we show that limit deformations can essentially freely bend even if subjected to the most restrictive constraints corresponding to the elastically rigid single-slip regime. The primary challenge arises in the upper bound where the differential constraints render any bending without incurring an additional energy cost particularly difficult. We overcome this obstacle with suitable non-smooth constructions and prove that a Lavrentiev phenomenon occurs if we artificially restrict our model to smooth deformations. This issue is absent if the differential constraints are appropriately softened.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"85 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities 涉及亚临界和临界非线性的仿射 p-Laplace 方程的最小能量解
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-10 DOI: 10.1515/acv-2022-0050
Edir Júnior Ferreira Leite, Marcos Montenegro
{"title":"Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities","authors":"Edir Júnior Ferreira Leite, Marcos Montenegro","doi":"10.1515/acv-2022-0050","DOIUrl":"https://doi.org/10.1515/acv-2022-0050","url":null,"abstract":"The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine &lt;jats:italic&gt;p&lt;/jats:italic&gt;-Laplace nonlocal operator &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msubsup&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mi mathvariant=\"script\"&gt;𝒜&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0160.png\" /&gt; &lt;jats:tex-math&gt;{Delta_{p}^{cal A}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;L&lt;/m:mi&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0140.png\" /&gt; &lt;jats:tex-math&gt;{L^{p}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; energy &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"script\"&gt;ℰ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /&gt; &lt;jats:tex-math&gt;{{cal E}_{p,Omega}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;L&lt;/m:mi&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0108.png\" /&gt; &lt;jats:tex-math&gt;L_{p}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0128.png\" /&gt; &lt;jats:tex-math&gt;{C^{1}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"script\"&gt;ℰ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /&gt; &lt;jats:tex-math&gt;{","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"118 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2+1-convex hull of a~finite set 无穷集的 2+1 凸体
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-01 DOI: 10.1515/acv-2023-0077
Pablo Angulo, Carlos García-Gutiérrez
{"title":"The 2+1-convex hull of a~finite set","authors":"Pablo Angulo, Carlos García-Gutiérrez","doi":"10.1515/acv-2023-0077","DOIUrl":"https://doi.org/10.1515/acv-2023-0077","url":null,"abstract":"Rank-one convexity is a weak form of convexity related to convex integration and the elusive notion of quasiconvexity, but more amenable both in theory and practice. However, exact algorithms for computing the rank one convex hull of a finite set are only known for some special cases of separate convexity with a finite number of directions. Both inner approximations either with laminates or &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0331.png\" /&gt; &lt;jats:tex-math&gt;{T_{4}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;’s and outer approximations through polyconvexity are known to be insufficient in general. We study &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;m:mo&gt;⊕&lt;/m:mo&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0351.png\" /&gt; &lt;jats:tex-math&gt;{mathbb{R}^{2}oplusmathbb{R}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-separately convex hulls of finite sets, which is a special case of rank-one convexity with infinitely many directions in which &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0331.png\" /&gt; &lt;jats:tex-math&gt;{T_{4}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;’s are known not to capture the rank one convex hull. When &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0353.png\" /&gt; &lt;jats:tex-math&gt;{mathbb{R}^{3}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is identified with a subset of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0130.png\" /&gt; &lt;jats:tex-math&gt;{2times 3}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; matrices, it is known to correspond also to quasiconvexity. We propose new inner and outer approximations built upon systematic use of known results, and prove that they agree. The inner approximation allows to understand better the structure of the rank one convex hull. The outer approximation gives rise to a computational algorithm which, in some cases, computes the hull exactly, and in general builds a sequence that c","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"21 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sub-Riemannian maximum modulus theorem 亚黎曼最大模定理
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-01-01 DOI: 10.1515/acv-2023-0066
Federico Buseghin, Nicolò Forcillo, Nicola Garofalo
{"title":"A sub-Riemannian maximum modulus theorem","authors":"Federico Buseghin, Nicolò Forcillo, Nicola Garofalo","doi":"10.1515/acv-2023-0066","DOIUrl":"https://doi.org/10.1515/acv-2023-0066","url":null,"abstract":"In this note we prove a sub-Riemannian maximum modulus theorem in a Carnot group. Using a nontrivial counterexample, we also show that such result is best possible, in the sense that in its statement one cannot replace the right-invariant horizontal gradient with the left-invariant one.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"55 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term 包含一阶项的p-拉普拉斯系统奇异解的对称性和单调性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2023-11-29 DOI: 10.1515/acv-2023-0043
Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi
{"title":"Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term","authors":"Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi","doi":"10.1515/acv-2023-0043","DOIUrl":"https://doi.org/10.1515/acv-2023-0043","url":null,"abstract":"We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by <jats:italic>p</jats:italic>-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"23 13","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信