{"title":"涉及亚临界和临界非线性的仿射 p-Laplace 方程的最小能量解","authors":"Edir Júnior Ferreira Leite, Marcos Montenegro","doi":"10.1515/acv-2022-0050","DOIUrl":null,"url":null,"abstract":"The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine <jats:italic>p</jats:italic>-Laplace nonlocal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>p</m:mi> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0160.png\" /> <jats:tex-math>{\\Delta_{p}^{\\cal A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0140.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> energy <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0108.png\" /> <jats:tex-math>L_{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0128.png\" /> <jats:tex-math>{C^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and by the comparison <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mi>W</m:mi> <m:mn>0</m:mn> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0330.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}(u)\\leq\\|u\\|_{W^{1,p}_{0}(\\Omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> generally strict.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"118 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities\",\"authors\":\"Edir Júnior Ferreira Leite, Marcos Montenegro\",\"doi\":\"10.1515/acv-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine <jats:italic>p</jats:italic>-Laplace nonlocal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mi>p</m:mi> <m:mi mathvariant=\\\"script\\\">𝒜</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0160.png\\\" /> <jats:tex-math>{\\\\Delta_{p}^{\\\\cal A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0140.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> energy <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0333.png\\\" /> <jats:tex-math>{{\\\\cal E}_{p,\\\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0108.png\\\" /> <jats:tex-math>L_{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0128.png\\\" /> <jats:tex-math>{C^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0333.png\\\" /> <jats:tex-math>{{\\\\cal E}_{p,\\\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and by the comparison <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mi>W</m:mi> <m:mn>0</m:mn> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0050_eq_0330.png\\\" /> <jats:tex-math>{{\\\\cal E}_{p,\\\\Omega}(u)\\\\leq\\\\|u\\\\|_{W^{1,p}_{0}(\\\\Omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> generally strict.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0050\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文涉及涉及仿射 p-Laplace 非局部算子 Δ p 𝒜 {\Delta_{p}^{cal A}} 的 Lane-Emden 和 Brezis-Nirenberg 问题。 , which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math.386 2021, Article ID 107808] 由凸几何中的仿射 L p {L^{p}} 能量 ℰ p , Ω {{cal E}_{p,\Omega}} 驱动,归因于 [E. Lutwak, D. Yang.Lutwak, D. Yang and G. Zhang, Sharp affine L p L_{p}. Sobolev 不等式, J. Differential Geom.62 2002, 1, 17-38].我们对最小能量型正 C 1 {C^{1}} 解的存在与不存在特别感兴趣。部分主要困难是由ℰ p , Ω {{cal E}_{p,\Omega}} 的不凸性和比较 ℰ p , Ω ( u ) ≤ ∥ u ∥ W 0 1 , p ( Ω ) {{cal E}_{p,\Omega}(u)\leq\|u\|_{W^{1,p}_{0}(\Omega)}} 一般严格造成的。
Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities
The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine p-Laplace nonlocal operator Δp𝒜{\Delta_{p}^{\cal A}}, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine Lp{L^{p}} energy ℰp,Ω{{\cal E}_{p,\Omega}} from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine LpL_{p} Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive C1{C^{1}} solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of ℰp,Ω{{\cal E}_{p,\Omega}} and by the comparison ℰp,Ω(u)≤∥u∥W01,p(Ω){{\cal E}_{p,\Omega}(u)\leq\|u\|_{W^{1,p}_{0}(\Omega)}} generally strict.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.