Advances in Calculus of Variations最新文献

筛选
英文 中文
On the regularity of optimal potentials in control problems governed by elliptic equations 论椭圆方程控制问题中最优势的正则性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-09-02 DOI: 10.1515/acv-2023-0010
Giuseppe Buttazzo, Juan Casado-Díaz, Faustino Maestre
{"title":"On the regularity of optimal potentials in control problems governed by elliptic equations","authors":"Giuseppe Buttazzo, Juan Casado-Díaz, Faustino Maestre","doi":"10.1515/acv-2023-0010","DOIUrl":"https://doi.org/10.1515/acv-2023-0010","url":null,"abstract":"In this paper we consider optimal control problems where the control variable is a potential and the state equation is an elliptic partial differential equation of Schrödinger type, governed by the Laplace operator. The cost functional involves the solution of the state equation and a penalization term for the control variable. While the existence of an optimal solution simply follows by the direct methods of the calculus of variations, the regularity of the optimal potential is a difficult question and under the general assumptions we consider, no better regularity than the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0010_eq_0228.png\"/> <jats:tex-math>mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> one can be expected. This happens in particular for the cases in which a bang-bang solution occurs, where optimal potentials are characteristic functions of a domain. We prove the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0010_eq_0228.png\"/> <jats:tex-math>mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> regularity of optimal solutions through a regularity result for PDEs. Some numerical simulations show the behavior of optimal potentials in some particular cases.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points 复线束上的杨-米尔斯-希格斯函数:临界点渐近
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-09-02 DOI: 10.1515/acv-2023-0064
Giacomo Canevari, Federico Luigi Dipasquale, Giandomenico Orlandi
{"title":"The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points","authors":"Giacomo Canevari, Federico Luigi Dipasquale, Giandomenico Orlandi","doi":"10.1515/acv-2023-0064","DOIUrl":"https://doi.org/10.1515/acv-2023-0064","url":null,"abstract":"We consider a gauge-invariant Ginzburg–Landau functional (also known as Abelian Yang–Mills–Higgs model), on Hermitian line bundles over closed Riemannian manifolds of dimension <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0064_eq_1143.png\"/> <jats:tex-math>{ngeq 3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Assuming a logarithmic energy bound in the coupling parameter, we study the asymptotic behaviour of critical points in the London limit. After a convenient choice of the gauge, we show compactness of finite-energy critical points in Sobolev norms. Moreover, thanks to a suitable monotonicity formula, we prove that the energy densities of critical points, rescaled by the logarithm of the coupling parameter, converge to the weight measure of a stationary, rectifiable varifold of codimension 2.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability from rigidity via umbilicity 通过脐带从刚性中获得稳定性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-27 DOI: 10.1515/acv-2023-0119
Julian Scheuer
{"title":"Stability from rigidity via umbilicity","authors":"Julian Scheuer","doi":"10.1515/acv-2023-0119","DOIUrl":"https://doi.org/10.1515/acv-2023-0119","url":null,"abstract":"We consider a range of geometric stability problems for hypersurfaces of spaceforms. One of the key results is an estimate relating the distance to a geodesic sphere of an embedded hypersurface with integral norms of the traceless Hessian operator of a level set function for the open set bounded by the hypersurface. As application, we give a unified treatment of many old and new stability problems arising in geometry and analysis. Those problems ask for spherical closeness of a hypersurface, given a geometric constraint. Examples include stability in Alexandroff’s soap bubble theorem in space forms, Serrin’s overdetermined problem, a Steklov problem involving the bi-Laplace operator and non-convex Alexandroff–Fenchel inequalities.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free boundary regularity in the fully nonlinear parabolic thin obstacle problem 全非线性抛物线薄障碍物问题中的自由边界正则性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-24 DOI: 10.1515/acv-2023-0126
Xi Hu, Lin Tang
{"title":"Free boundary regularity in the fully nonlinear parabolic thin obstacle problem","authors":"Xi Hu, Lin Tang","doi":"10.1515/acv-2023-0126","DOIUrl":"https://doi.org/10.1515/acv-2023-0126","url":null,"abstract":"\u0000 <jats:p>We study the regularity of the free boundary in the fully nonlinear parabolic thin obstacle problem.\u0000Under the assumption of time semiconvexity, our main result establishes that the free boundary is a <jats:inline-formula id=\"j_acv-2023-0126_ineq_9999\">\u0000 <jats:alternatives>\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\u0000 <m:msup>\u0000 <m:mi>C</m:mi>\u0000 <m:mn>1</m:mn>\u0000 </m:msup>\u0000 </m:math>\u0000 <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0126_eq_0100.png\" />\u0000 <jats:tex-math>C^{1}</jats:tex-math>\u0000 </jats:alternatives>\u0000 </jats:inline-formula> graph in <jats:italic>x</jats:italic> near any regular free boundary point.</jats:p>","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the interior regularity criteria for the viscoelastic fluid system with damping 关于带阻尼粘弹性流体系统的内部正则准则
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-24 DOI: 10.1515/acv-2023-0107
Gaocheng Yue, Zixuan Pang, Yangyang Wu
{"title":"On the interior regularity criteria for the viscoelastic fluid system with damping","authors":"Gaocheng Yue, Zixuan Pang, Yangyang Wu","doi":"10.1515/acv-2023-0107","DOIUrl":"https://doi.org/10.1515/acv-2023-0107","url":null,"abstract":"\u0000 We consider a system of PDEs that model a viscoelastic fluid with damping mechanism. In \u0000 \u0000 \u0000 \u0000 ℝ\u0000 3\u0000 \u0000 \u0000 \u0000 {mathbb{R}^{3}}\u0000 \u0000 , we construct\u0000some new local energy bounds that enable us to improve several ϵ-regularity criteria for the Caffarelli–Kohn–Nirenberg theorem for weak solutions\u0000of this system.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A singular Yamabe problem on manifolds with solid cones 具有实锥的流形上的奇异 Yamabe 问题
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-24 DOI: 10.1515/acv-2022-0105
Juan Alcon Apaza, Sérgio Almaraz
{"title":"A singular Yamabe problem on manifolds with solid cones","authors":"Juan Alcon Apaza, Sérgio Almaraz","doi":"10.1515/acv-2022-0105","DOIUrl":"https://doi.org/10.1515/acv-2022-0105","url":null,"abstract":"We study the existence of conformal metrics on noncompact Riemannian manifolds with noncompact boundary, which are complete as metric spaces and have negative constant scalar curvature in the interior and negative constant mean curvature on the boundary. These metrics are constructed on smooth manifolds obtained by removing <jats:italic>d</jats:italic>-dimensional submanifolds from certain <jats:italic>n</jats:italic>-dimensional compact spaces locally modelled on generalized solid cones. We prove the existence of such metrics if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>d</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0105_eq_0720.png\"/> <jats:tex-math>{d&gt;frac{n-2}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our main theorem is inspired by the classical results by Aviles–McOwen and Loewner–Nirenberg, known in the literature as the “singular Yamabe problem”.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flat flow solution to the mean curvature flow with volume constraint 带体积约束的平均曲率流的平流解
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-23 DOI: 10.1515/acv-2023-0047
Vesa Julin
{"title":"Flat flow solution to the mean curvature flow with volume constraint","authors":"Vesa Julin","doi":"10.1515/acv-2023-0047","DOIUrl":"https://doi.org/10.1515/acv-2023-0047","url":null,"abstract":"In this paper I will revisit the construction of a global weak solution to the volume preserving mean curvature flow via discrete minimizing movement scheme by Mugnai, Seis and Spadaro [L. Mugnai, C. Seis and E. Spadaro, Global solutions to the volume-preserving mean-curvature flow, Calc. Var. Partial Differential Equations 55 2016, 1, Article ID 18]. This method is based on the gradient flow approach due to Almgren, Taylor and Wang [F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 1993, 2, 387–438] and Luckhaus and Sturzenhecker [S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3 1995, 2, 253–271] and my aim is to replace the volume penalization with the volume constraint directly in the discrete scheme, which from practical point of view is perhaps more natural. A technical novelty is the proof of the density estimate which is based on second variation argument.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the subdifferential and minimizers for the anisotropic p-capacity 各向异性 p 能力的次微分和最小值的特征
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-04-23 DOI: 10.1515/acv-2023-0057
Esther Cabezas-Rivas, Salvador Moll, Marcos Solera
{"title":"Characterization of the subdifferential and minimizers for the anisotropic p-capacity","authors":"Esther Cabezas-Rivas, Salvador Moll, Marcos Solera","doi":"10.1515/acv-2023-0057","DOIUrl":"https://doi.org/10.1515/acv-2023-0057","url":null,"abstract":"We obtain existence of minimizers for the <jats:italic>p</jats:italic>-capacity functional defined with respect to a centrally symmetric anisotropy for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_0885.png\" /> <jats:tex-math>{1&lt;p&lt;infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including the case of a crystalline norm in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1021.png\" /> <jats:tex-math>{mathbb{R}^{N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mover accent=\"true\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1019.png\" /> <jats:tex-math>{mathbb{R}^{N}setminusoverline{Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal transport with nonlinear mobilities: A deterministic particle approximation result 具有非线性流动性的最优传输:确定性粒子近似结果
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-03-25 DOI: 10.1515/acv-2022-0076
Simone Di Marino, Lorenzo Portinale, Emanuela Radici
{"title":"Optimal transport with nonlinear mobilities: A deterministic particle approximation result","authors":"Simone Di Marino, Lorenzo Portinale, Emanuela Radici","doi":"10.1515/acv-2022-0076","DOIUrl":"https://doi.org/10.1515/acv-2022-0076","url":null,"abstract":"We study the discretisation of generalised Wasserstein distances with nonlinear mobilities on the real line via suitable discrete metrics on the cone of N ordered particles, a setting which naturally appears in the framework of deterministic particle approximation of partial differential equations. In particular, we provide a Γ-convergence result for the associated discrete metrics as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0076_eq_0466.png\" /> <jats:tex-math>{Ntoinfty}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to the continuous one and discuss applications to the approximation of one-dimensional conservation laws (of gradient flow type) via the so-called generalised minimising movements, proving a convergence result of the schemes at any given discrete time step <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>τ</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0076_eq_0751.png\" /> <jats:tex-math>{tau&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This the first work of a series aimed at sheding new lights on the interplay between generalised gradient-flow structures, conservation laws, and Wasserstein distances with nonlinear mobilities.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the area-preserving Willmore flow of small bubbles sliding on a domain’s boundary 关于小气泡在域边界上滑动的保面积威尔莫尔流
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2024-02-20 DOI: 10.1515/acv-2023-0023
Jan-Henrik Metsch
{"title":"On the area-preserving Willmore flow of small bubbles sliding on a domain’s boundary","authors":"Jan-Henrik Metsch","doi":"10.1515/acv-2023-0023","DOIUrl":"https://doi.org/10.1515/acv-2023-0023","url":null,"abstract":"We consider the area-preserving Willmore evolution of surfaces ϕ that are close to a half-sphere with a small radius, sliding on the boundary <jats:italic>S</jats:italic> of a domain Ω while meeting it orthogonally. We prove that the flow exists for all times and keeps a “half-spherical” shape. Additionally, we investigate the asymptotic behavior of the flow and prove that for large times the barycenter of the surfaces approximately follows an explicit ordinary differential equation. Imposing additional conditions on the mean curvature of <jats:italic>S</jats:italic>, we then establish convergence of the flow.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信