Esther Cabezas-Rivas, Salvador Moll, Marcos Solera
{"title":"各向异性 p 能力的次微分和最小值的特征","authors":"Esther Cabezas-Rivas, Salvador Moll, Marcos Solera","doi":"10.1515/acv-2023-0057","DOIUrl":null,"url":null,"abstract":"We obtain existence of minimizers for the <jats:italic>p</jats:italic>-capacity functional defined with respect to a centrally symmetric anisotropy for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_0885.png\" /> <jats:tex-math>{1<p<\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including the case of a crystalline norm in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1021.png\" /> <jats:tex-math>{\\mathbb{R}^{N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mover accent=\"true\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1019.png\" /> <jats:tex-math>{\\mathbb{R}^{N}\\setminus\\overline{\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the subdifferential and minimizers for the anisotropic p-capacity\",\"authors\":\"Esther Cabezas-Rivas, Salvador Moll, Marcos Solera\",\"doi\":\"10.1515/acv-2023-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain existence of minimizers for the <jats:italic>p</jats:italic>-capacity functional defined with respect to a centrally symmetric anisotropy for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0057_eq_0885.png\\\" /> <jats:tex-math>{1<p<\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including the case of a crystalline norm in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0057_eq_1021.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mover accent=\\\"true\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0057_eq_1019.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{N}\\\\setminus\\\\overline{\\\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0057\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们得到了针对 1 < p < ∞ {1<p<\infty} 的中心对称各向异性定义的 p 容量函数的最小值存在性,包括ℝ N {\mathbb{R}^{N}} 中的结晶规范。 包括ℝ N {\mathbb{R}^{N}} 中的晶体规范的情况。 .这个结果是通过相应子微分的特征得到的,它适用于形式为 ℝ N ∖ Ω ¯\ {mathbb{R}^{N}\setminus\overline\{Omega}} 的无界域,前提是温和的正则性假设(Lipschitz-连续边界)以及对有界域 Ω 没有凸性要求。如果我们进一步假设一个内部球条件(Wulff 形状扮演球的角色),那么任何最小化都可以证明是 Lipschitz 连续的。
Characterization of the subdifferential and minimizers for the anisotropic p-capacity
We obtain existence of minimizers for the p-capacity functional defined with respect to a centrally symmetric anisotropy for 1<p<∞{1<p<\infty}, including the case of a crystalline norm in ℝN{\mathbb{R}^{N}}. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form ℝN∖Ω¯{\mathbb{R}^{N}\setminus\overline{\Omega}} under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.