Quasiconformal, Lipschitz, and BV mappings in metric spaces

IF 1.3 3区 数学 Q1 MATHEMATICS
Panu Lahti
{"title":"Quasiconformal, Lipschitz, and BV mappings in metric spaces","authors":"Panu Lahti","doi":"10.1515/acv-2022-0071","DOIUrl":null,"url":null,"abstract":"Consider a mapping <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0735.png\" /> <jats:tex-math>{f\\colon X\\to Y}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between two metric measure spaces. We study generalized versions of the local Lipschitz number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Lip</m:mi> <m:mo>⁡</m:mo> <m:mi>f</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0649.png\" /> <jats:tex-math>{\\operatorname{Lip}f}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as well as of the distortion number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>H</m:mi> <m:mi>f</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0480.png\" /> <jats:tex-math>{H_{f}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> that is used to define quasiconformal mappings. Using these numbers, we give sufficient conditions for <jats:italic>f</jats:italic> being a BV mapping <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>BV</m:mi> <m:mi>loc</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo>;</m:mo> <m:mi>Y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0759.png\" /> <jats:tex-math>{f\\in\\mathrm{BV}_{\\mathrm{loc}}(X;Y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or a Newton–Sobolev mapping <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msubsup> <m:mi>N</m:mi> <m:mi>loc</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo>;</m:mo> <m:mi>Y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0751.png\" /> <jats:tex-math>{f\\in N_{\\mathrm{loc}}^{1,p}(X;Y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0071_eq_0395.png\" /> <jats:tex-math>{1\\leq p&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"45 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a mapping f : X Y {f\colon X\to Y} between two metric measure spaces. We study generalized versions of the local Lipschitz number Lip f {\operatorname{Lip}f} , as well as of the distortion number H f {H_{f}} that is used to define quasiconformal mappings. Using these numbers, we give sufficient conditions for f being a BV mapping f BV loc ( X ; Y ) {f\in\mathrm{BV}_{\mathrm{loc}}(X;Y)} or a Newton–Sobolev mapping f N loc 1 , p ( X ; Y ) {f\in N_{\mathrm{loc}}^{1,p}(X;Y)} , with 1 p < {1\leq p<\infty} .
度量空间中的准共形、Lipschitz 和 BV 映射
考虑两个度量空间之间的映射 f : X → Y {f\colon X\to Y} 。我们研究局部 Lipschitz 数 Lip f {\operatorname{Lip}f} 的广义版本,以及用于定义准共形映射的变形数 H f {H_{f}} 的广义版本。利用这些数字,我们给出了 f 是 BV 映射 f∈ BV loc ( X ; Y ) {f\in\mathrm{BV}_{\mathrm{loc}}(X. Y)} 或牛顿映射 f∈ BV loc ( X ; Y ) {f\in\mathrm{BV}_{\mathrm{loc}}(X. Y)} 的充分条件;Y)} 或者牛顿-索博列夫映射 f∈ N loc 1 , p ( X ; Y ) {f\in N_{\mathrm{loc}}^{1,p}(X;Y)} , 其中 1 ≤ p < ∞ {1\leq p<\infty} 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信