Advances in Calculus of Variations最新文献

筛选
英文 中文
Properties of the free boundaries for the obstacle problem of the porous medium equations 多孔介质方程障碍问题自由边界的性质
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-08-30 DOI: 10.1515/acv-2021-0113
Sunghoon Kim, Ki-ahm Lee, Jinwan Park
{"title":"Properties of the free boundaries for the obstacle problem of the porous medium equations","authors":"Sunghoon Kim, Ki-ahm Lee, Jinwan Park","doi":"10.1515/acv-2021-0113","DOIUrl":"https://doi.org/10.1515/acv-2021-0113","url":null,"abstract":"Abstract In this paper, we study the existence and interior W 2 , p {W^{2,p}} -regularity of the solution, and the regularity of the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} to the obstacle problem of the porous medium equation, u t = Δ ⁢ u m {u_{t}=Delta u^{m}} ( m > 1 {m>1} ) with the obstacle function ϕ. The penalization method is applied to have the existence and interior regularity. To deal with the interaction between two free boundaries ∂ ⁡ { u > ϕ } {partial{u>phi}} and ∂ ⁡ { u > 0 } {partial{u>0}} , we consider two cases on the initial data which make the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} separate from the free boundary ∂ ⁡ { u > 0 } {partial{u>0}} . Then the problem is converted into the obstacle problem for a fully nonlinear operator. Hence, the C 1 {C^{1}} -regularity of the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} is obtained by the regularity theory of a class of obstacle problems for the general fully nonlinear operator.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47653952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On functions of bounded β-dimensional mean oscillation 关于有界β维平均振荡的函数
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-07-14 DOI: 10.1515/acv-2022-0084
You-Wei Chen, Daniel Spector
{"title":"On functions of bounded β-dimensional mean oscillation","authors":"You-Wei Chen, Daniel Spector","doi":"10.1515/acv-2022-0084","DOIUrl":"https://doi.org/10.1515/acv-2022-0084","url":null,"abstract":"Abstract In this paper, we define a notion of β-dimensional mean oscillation of functions u : Q 0 ⊂ ℝ d → ℝ {u:Q_{0}subsetmathbb{R}^{d}tomathbb{R}} which are integrable on β-dimensional subsets of the cube Q 0 {Q_{0}} : ∥ u ∥ BMO β ⁢ ( Q 0 ) := sup Q ⊂ Q 0 ⁡ inf c ∈ ℝ ⁡ 1 l ⁢ ( Q ) β ⁢ ∫ Q | u - c | ⁢ 𝑑 ℋ ∞ β , displaystyle|u|_{mathrm{BMO}^{beta}(Q_{0})}vcentcolon=sup_{Qsubset Q_{% 0}}inf_{cinmathbb{R}}frac{1}{l(Q)^{beta}}int_{Q}|u-c|,dmathcal{H}^{% beta}_{infty}, where the supremum is taken over all finite subcubes Q parallel to Q 0 {Q_{0}} , l ⁢ ( Q ) {l(Q)} is the length of the side of the cube Q, and ℋ ∞ β {mathcal{H}^{beta}_{infty}} is the Hausdorff content. In the case β = d {beta=d} we show this definition is equivalent to the classical notion of John and Nirenberg, while our main result is that for every β ∈ ( 0 , d ] {betain(0,d]} one has a dimensionally appropriate analogue of the John–Nirenberg inequality for functions with bounded β-dimensional mean oscillation: There exist constants c , C > 0 {c,C>0} such that ℋ ∞ β ⁢ ( { x ∈ Q : | u ⁢ ( x ) - c Q | > t } ) ≤ C ⁢ l ⁢ ( Q ) β ⁢ exp ⁡ ( - c ⁢ t ∥ u ∥ BMO β ⁢ ( Q 0 ) ) displaystylemathcal{H}^{beta}_{infty}({xin Q:|u(x)-c_{Q}|>t})leq Cl(Q)% ^{beta}expbiggl{(}-frac{ct}{|u|_{mathrm{BMO}^{beta}(Q_{0})}}biggr{)} for every t > 0 {t>0} , u ∈ BMO β ⁢ ( Q 0 ) {uinmathrm{BMO}^{beta}(Q_{0})} , Q ⊂ Q 0 {Qsubset Q_{0}} , and suitable c Q ∈ ℝ {c_{Q}inmathbb{R}} . Our proof relies on the establishment of capacitary analogues of standard results in integration theory that may be of independent interest.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44010899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1 关于具有Robin边界条件的p-拉普拉斯算子在p趋于1时的第一个特征值的行为
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-06-29 DOI: 10.1515/acv-2021-0085
Francesco Della Pietra, C. Nitsch, Francescantonio Oliva, C. Trombetti
{"title":"On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1","authors":"Francesco Della Pietra, C. Nitsch, Francescantonio Oliva, C. Trombetti","doi":"10.1515/acv-2021-0085","DOIUrl":"https://doi.org/10.1515/acv-2021-0085","url":null,"abstract":"Abstract In this paper, we study the Γ-limit, as p → 1 {pto 1} , of the functional J p ⁢ ( u ) = ∫ Ω | ∇ ⁡ u | p + β ⁢ ∫ ∂ ⁡ Ω | u | p ∫ Ω | u | p , J_{p}(u)=frac{int_{Omega}lvertnabla urvert^{p}+betaint_{partialOmega% }lvert urvert^{p}}{int_{Omega}lvert urvert^{p}}, where Ω is a smooth bounded open set in ℝ N {mathbb{R}^{N}} , p > 1 {p>1} and β is a real number. Among our results, for β > - 1 {beta>-1} , we derive an isoperimetric inequality for Λ ⁢ ( Ω , β ) = inf u ∈ BV ⁡ ( Ω ) , u ≢ 0 ⁡ | D ⁢ u | ⁢ ( Ω ) + min ⁡ ( β , 1 ) ⁢ ∫ ∂ ⁡ Ω | u | ∫ Ω | u | Lambda(Omega,beta)=inf_{uinoperatorname{BV}(Omega),,unotequiv 0}% frac{lvert Durvert(Omega)+min(beta,1)int_{partialOmega}lvert urvert% }{int_{Omega}lvert urvert} which is the limit as p → 1 + {pto 1^{+}} of λ ⁢ ( Ω , p , β ) = min u ∈ W 1 , p ⁢ ( Ω ) ⁡ J p ⁢ ( u ) {lambda(Omega,p,beta)=min_{uin W^{1,p}(Omega)}J_{p}(u)} . We show that among all bounded and smooth open sets with given volume, the ball maximizes Λ ⁢ ( Ω , β ) {Lambda(Omega,beta)} when β ∈ ( - 1 , 0 ) {betain(-1,0)} and minimizes Λ ⁢ ( Ω , β ) {Lambda(Omega,beta)} when β ∈ [ 0 , ∞ ) {betain[0,infty)} .","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48582838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the Hölder regularity of all extrema in Hilbert’s 19th Problem 关于Hilbert第19问题中所有极值的Hölder正则性
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-06-29 DOI: 10.1515/acv-2021-0089
F. Tomi, A. Tromba
{"title":"On the Hölder regularity of all extrema in Hilbert’s 19th Problem","authors":"F. Tomi, A. Tromba","doi":"10.1515/acv-2021-0089","DOIUrl":"https://doi.org/10.1515/acv-2021-0089","url":null,"abstract":"Abstract Let Ω ⊂ ℝ n {Omegasubsetmathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:Omegatimesmathbb{R}^{nN}tomathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {Omegatimesmathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nNtimes nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{alphabeta})in C^{0}(Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{alphabeta}(x)xi^{i}_{alpha}xi^{j}_{beta}=A^{ji}_{betaalpha}(x)% xi^{i}_{alpha}xi^{j}_{beta}geqlambdalvertxirvert^{2},quadlambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , displaystylelim_{lvert prverttoinfty}frac{1}{lvert prvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , displaystyle{-}C_{0}+c_{0}lvert prvert^{2}leq F(x,p)leq C_{0}(1+lvert p% rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , displaystylelvert F_{p}(x,p)-F_{p}(x,q)rvertleq C_{0}lvert p-qrvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 displaystylelangle F_{p}(x,p)-F_{p}(x,q),p-qranglegeq c_{0}lvert p-q% rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=int_{Omega}F(x,Du(x)),dx+int_{Omega}G(x,u),dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,cdot,)in C^{1}(mathbb{R}^{N})} for each x ∈ Ω {xinOmega} , G ⁢ ( ⋅ , u ) {G(,cdot,,u)} is measurable for each u ∈ ℝ N {uinmathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) lvert G_{u}(x,u)rvertleq C_{0}(1+lvert urvert^{s}) with s < n + 2 n - 2 {s<frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {uin W^{1,2}(Omega,mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , sum_{alpha}frac{partial}{partial x^{alpha}}F_{p^{i}_{alpha}}(x,Du)=G_{u% ^{i}}(x,u),quad i=1,ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48241125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Lp Minkowski problem for q-torsional rigidity q-扭转刚度的Lp-Minkowski问题
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-05-20 DOI: 10.1515/acv-2022-0041
Bin Chen, Xia Zhao, Weidong Wang, P. Zhao
{"title":"The Lp Minkowski problem for q-torsional rigidity","authors":"Bin Chen, Xia Zhao, Weidong Wang, P. Zhao","doi":"10.1515/acv-2022-0041","DOIUrl":"https://doi.org/10.1515/acv-2022-0041","url":null,"abstract":"Abstract In this paper, we introduce the L p {L_{p}} q-torsional measure for p ∈ ℝ {pinmathbb{R}} and q > 1 {q>1} by the L p {L_{p}} variational formula for the q-torsional rigidity of convex bodies without smoothness conditions. Moreover, we achieve the existence of solutions to the L p {L_{p}} Minkowski problem with respect to the q-torsional rigidity for discrete measures and general measures when 0 < p < 1 {0 1 {q>1} .","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49018671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit of solutions for semilinear Hamilton–Jacobi equations with degenerate viscosity 退化粘性的双线性Hamilton–Jacobi方程解的极限
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-05-16 DOI: 10.1515/acv-2022-0108
Jian-lin Zhang
{"title":"Limit of solutions for semilinear Hamilton–Jacobi equations with degenerate viscosity","authors":"Jian-lin Zhang","doi":"10.1515/acv-2022-0108","DOIUrl":"https://doi.org/10.1515/acv-2022-0108","url":null,"abstract":"Abstract In the paper we prove the convergence of viscosity solutions u λ {u_{lambda}} as λ → 0 + {lambdarightarrow 0_{+}} for the parametrized degenerate viscous Hamilton–Jacobi equation H ⁢ ( x , d x ⁢ u , λ ⁢ u ) = α ⁢ ( x ) ⁢ Δ ⁢ u , α ⁢ ( x ) ≥ 0 , x ∈ 𝕋 n H(x,d_{x}u,lambda u)=alpha(x)Delta u,quadalpha(x)geq 0,quad xinmathbb% {T}^{n} under suitable convex and monotonic conditions on H : T * ⁢ M × ℝ → ℝ {H:T^{*}Mtimesmathbb{R}rightarrowmathbb{R}} . Such a limit can be characterized in terms of stochastic Mather measures associated with the critical equation H ⁢ ( x , d x ⁢ u , 0 ) = α ⁢ ( x ) ⁢ Δ ⁢ u . H(x,d_{x}u,0)=alpha(x)Delta u.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45024515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The homogeneous causal action principle on a compact domain in momentum space 动量空间紧域上的齐次因果作用原理
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-05-09 DOI: 10.1515/acv-2022-0038
F. Finster, Michelle Frankl, Christoph Langer
{"title":"The homogeneous causal action principle on a compact domain in momentum space","authors":"F. Finster, Michelle Frankl, Christoph Langer","doi":"10.1515/acv-2022-0038","DOIUrl":"https://doi.org/10.1515/acv-2022-0038","url":null,"abstract":"Abstract The homogeneous causal action principle on a compact domain of momentum space is introduced. The connection to causal fermion systems is worked out. Existence and compactness results are reviewed. The Euler–Lagrange equations are derived and analyzed under suitable regularity assumptions.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48942063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A split special Lagrangian calibration associated with frame vorticity 与框架涡度相关的分裂特殊拉格朗日定标
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-05-08 DOI: 10.1515/acv-2022-0036
M. Salvai
{"title":"A split special Lagrangian calibration associated with frame vorticity","authors":"M. Salvai","doi":"10.1515/acv-2022-0036","DOIUrl":"https://doi.org/10.1515/acv-2022-0036","url":null,"abstract":"Abstract Let M be an oriented three-dimensional Riemannian manifold. We define a notion of vorticity of local sections of the bundle SO ⁢ ( M ) → M {mathrm{SO}(M)rightarrow M} of all its positively oriented orthonormal tangent frames. When M is a space form, we relate the concept to a suitable invariant split pseudo-Riemannian metric on Iso o ⁢ ( M ) ≅ SO ⁢ ( M ) {mathrm{Iso}_{o}(M)congmathrm{SO}(M)} : A local section has positive vorticity if and only if it determines a space-like submanifold. In the Euclidean case we find explicit homologically volume maximizing sections using a split special Lagrangian calibration. We introduce the concept of optimal frame vorticity and give an optimal screwed global section for the three-sphere. We prove that it is also homologically volume maximizing (now using a common one-point split calibration). Besides, we show that no optimal section can exist in the Euclidean and hyperbolic cases.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49341825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Harnack inequality for parabolic equations with coefficients depending on time 系数随时间变化的抛物型方程的Harnack不等式
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-04-20 DOI: 10.1515/acv-2021-0055
F. Paronetto
{"title":"Harnack inequality for parabolic equations with coefficients depending on time","authors":"F. Paronetto","doi":"10.1515/acv-2021-0055","DOIUrl":"https://doi.org/10.1515/acv-2021-0055","url":null,"abstract":"Abstract We define a homogeneous De Giorgi class of order p = 2 {p=2} that contains the solutions of evolution equations of the types ξ ⁢ ( x , t ) ⁢ u t + A ⁢ u = 0 {xi(x,t)u_{t}+Au=0} and ( ξ ⁢ ( x , t ) ⁢ u ) t + A ⁢ u = 0 {(xi(x,t)u)_{t}+Au=0} , where ξ > 0 {xi>0} almost everywhere and A is a suitable elliptic operator. For functions belonging to this class, we prove a Harnack inequality. As a byproduct, one can obtain Hölder continuity for solutions of a subclass of the first equation.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49409494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regularity results for a class of widely degenerate parabolic equations 一类广义退化抛物型方程的正则性结果
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-04-12 DOI: 10.1515/acv-2022-0062
P. Ambrosio, Antonia Passarelli di Napoli
{"title":"Regularity results for a class of widely degenerate parabolic equations","authors":"P. Ambrosio, Antonia Passarelli di Napoli","doi":"10.1515/acv-2022-0062","DOIUrl":"https://doi.org/10.1515/acv-2022-0062","url":null,"abstract":"Abstract Motivated by applications to gas filtration problems, we study the regularity of weak solutions to the strongly degenerate parabolic PDE u t - div ⁡ ( ( | D ⁢ u | - ν ) + p - 1 ⁢ D ⁢ u | D ⁢ u | ) = f   in ⁢ Ω T = Ω × ( 0 , T ) , u_{t}-operatorname{div}Bigl{(}(lvert Durvert-nu)_{+}^{p-1}frac{Du}{% lvert Durvert}Bigr{)}=fquadtext{in }Omega_{T}=Omegatimes(0,T), where Ω is a bounded domain in ℝ n {mathbb{R}^{n}} for n ≥ 2 {ngeq 2} , p ≥ 2 {pgeq 2} , ν is a positive constant and ( ⋅ ) + {(,cdot,)_{+}} stands for the positive part. Assuming that the datum f belongs to a suitable Lebesgue–Sobolev parabolic space, we establish the Sobolev spatial regularity of a nonlinear function of the spatial gradient of the weak solutions, which in turn implies the existence of the weak time derivative u t {u_{t}} . The main novelty here is that the structure function of the above equation satisfies standard growth and ellipticity conditions only outside a ball with radius ν centered at the origin. We would like to point out that the first result obtained here can be considered, on the one hand, as the parabolic counterpart of an elliptic result established in [L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations [corrected version of mr2584740], J. Math. Pures Appl. (9) 93 2010, 6, 652–671], and on the other hand as the extension to a strongly degenerate context of some known results for less degenerate parabolic equations.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45729676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信