On the Hölder regularity of all extrema in Hilbert’s 19th Problem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Tomi, A. Tromba
{"title":"On the Hölder regularity of all extrema in Hilbert’s 19th Problem","authors":"F. Tomi, A. Tromba","doi":"10.1515/acv-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ ℝ n {\\Omega\\subset\\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:\\Omega\\times\\mathbb{R}^{nN}\\to\\mathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {\\Omega\\times\\mathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nN\\times nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{\\alpha\\beta})\\in C^{0}(\\Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{\\alpha\\beta}(x)\\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}=A^{ji}_{\\beta\\alpha}(x)% \\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}\\geq\\lambda\\lvert\\xi\\rvert^{2},\\quad\\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \\displaystyle\\lim_{\\lvert p\\rvert\\to\\infty}\\frac{1}{\\lvert p\\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \\displaystyle{-}C_{0}+c_{0}\\lvert p\\rvert^{2}\\leq F(x,p)\\leq C_{0}(1+\\lvert p% \\rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \\displaystyle\\lvert F_{p}(x,p)-F_{p}(x,q)\\rvert\\leq C_{0}\\lvert p-q\\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \\displaystyle\\langle F_{p}(x,p)-F_{p}(x,q),p-q\\rangle\\geq c_{0}\\lvert p-q% \\rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\\int_{\\Omega}F(x,Du(x))\\,dx+\\int_{\\Omega}G(x,u)\\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\\cdot\\,)\\in C^{1}(\\mathbb{R}^{N})} for each x ∈ Ω {x\\in\\Omega} , G ⁢ ( ⋅ , u ) {G(\\,\\cdot\\,,u)} is measurable for each u ∈ ℝ N {u\\in\\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \\lvert G_{u}(x,u)\\rvert\\leq C_{0}(1+\\lvert u\\rvert^{s}) with s < n + 2 n - 2 {s<\\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\\in W^{1,2}(\\Omega,\\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \\sum_{\\alpha}\\frac{\\partial}{\\partial x^{\\alpha}}F_{p^{i}_{\\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\\quad i=1,\\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2021-0089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {\Omega\times\mathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nN\times nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{\alpha\beta})\in C^{0}(\Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{\alpha\beta}(x)\xi^{i}_{\alpha}\xi^{j}_{\beta}=A^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ⁢ ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s<\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
关于Hilbert第19问题中所有极值的Hölder正则性
设Ω∧∈n {\Omega\subset\mathbb{R}^{n}} 是C {c ^{1}} 光滑紧致域。更进一步,设F: Ω x, n, n,→ {f:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F∑(x, p) {F(x,p)} ,是C 0 {c ^{0}} ,对p可导,对F可导,p = dp∑F {f_{p}:= d_{p}f} 在Ω上连续的 {\Omega\times\mathbb{R}^{nN}} F在p中是严格凸的,考虑n n × n n {nN\times nN} 矩阵A = (A α _ β i _ j)∈c0 _ (Ω) {a =(a ^{{ij}}_{\alpha\beta})\in c ^{0}(\Omega)} 满足(0.1)A α减去β i减去j减去(x)减去ξ α i减去ξ β j = A β减去α j减去i减去(x)减去ξ α i减去ξ β j≥λ减去| ξ | 2, λ > 0。a ^{ij}_{\alpha\beta}(x)\xi^{I}_{\alpha}\xi^{j}_{\beta}= a ^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ⁢ ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信