Advances in Calculus of Variations最新文献

筛选
英文 中文
Automation et travail 自动化与劳动
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2170
Bo Harvey
{"title":"Automation et travail","authors":"Bo Harvey","doi":"10.4000/variations.2170","DOIUrl":"https://doi.org/10.4000/variations.2170","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"19 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79683246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peter Weiss versus Martin Heidegger 彼得·韦斯对马丁·海德格尔
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2238
Lucia Sagradini
{"title":"Peter Weiss versus Martin Heidegger","authors":"Lucia Sagradini","doi":"10.4000/variations.2238","DOIUrl":"https://doi.org/10.4000/variations.2238","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"96 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75991967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heureux comme Heidegger en France ? 像法国的海德格尔一样快乐?
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2178
Alexander Neumann
{"title":"Heureux comme Heidegger en France ?","authors":"Alexander Neumann","doi":"10.4000/variations.2178","DOIUrl":"https://doi.org/10.4000/variations.2178","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"38 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84291568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
La paranoïa androïde 机器人偏执狂
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2164
Amelia Horgan
{"title":"La paranoïa androïde","authors":"Amelia Horgan","doi":"10.4000/variations.2164","DOIUrl":"https://doi.org/10.4000/variations.2164","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"14 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87607749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
En attendant les robots 等待机器人
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2159
Jason Read
{"title":"En attendant les robots","authors":"Jason Read","doi":"10.4000/variations.2159","DOIUrl":"https://doi.org/10.4000/variations.2159","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"81 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85592239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Pour une critique des approches « média-techniques » 对“媒体技术”方法的批评
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-09-23 DOI: 10.4000/variations.2240
Fabien Granjon
{"title":"Pour une critique des approches « média-techniques »","authors":"Fabien Granjon","doi":"10.4000/variations.2240","DOIUrl":"https://doi.org/10.4000/variations.2240","url":null,"abstract":"","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"31 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77002214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No Lavrentiev gap for some double phase integrals 对于某些双相积分没有Lavrentiev隙
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-08-30 DOI: 10.1515/acv-2021-0109
Filomena De Filippis, F. Leonetti
{"title":"No Lavrentiev gap for some double phase integrals","authors":"Filomena De Filippis, F. Leonetti","doi":"10.1515/acv-2021-0109","DOIUrl":"https://doi.org/10.1515/acv-2021-0109","url":null,"abstract":"Abstract We prove the absence of the Lavrentiev gap for non-autonomous functionals ℱ ⁢ ( u ) ≔ ∫ Ω f ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x , mathcal{F}(u)coloneqqint_{Omega}f(x,Du(x)),dx, where the density f ⁢ ( x , z ) {f(x,z)} is α-Hölder continuous with respect to x ∈ Ω ⊂ ℝ n {xinOmegasubsetmathbb{R}^{n}} , it satisfies the ( p , q ) {(p,q)} -growth conditions | z | p ⩽ f ⁢ ( x , z ) ⩽ L ⁢ ( 1 + | z | q ) , lvert zrvert^{p}leqslant f(x,z)leqslant L(1+lvert zrvert^{q}), where 1 < p < q < p ⁢ ( n + α n ) {1<p<q<p(frac{n+alpha}{n})} , and it can be approximated from below by suitable densities f k {f_{k}} .","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44281893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Interpolation inequalities for partial regularity 部分正则性的插值不等式
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-08-30 DOI: 10.1515/acv-2021-0043
C. Hamburger
{"title":"Interpolation inequalities for partial regularity","authors":"C. Hamburger","doi":"10.1515/acv-2021-0043","DOIUrl":"https://doi.org/10.1515/acv-2021-0043","url":null,"abstract":"Abstract We propose two new direct methods for proving partial regularity of solutions of nonlinear elliptic or parabolic systems. The methods are based on two similar interpolation inequalities for solutions of linear systems with constant coefficient. The first results from an interpolation inequality of L p {L^{p}} norms in combination with an L p {L^{p}} estimate with low exponent p > 1 {p>1} . For the second, we provide a functional-analytic proof, that also sheds light upon the A-harmonic approximation lemma of Duzaar and Steffen. Both methods use a Caccioppoli inequality and avoid higher integrability. We illustrate the methods in detail for the case of a quasilinear elliptic system.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"16 1","pages":"651 - 663"},"PeriodicalIF":1.7,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44430146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of the free boundaries for the obstacle problem of the porous medium equations 多孔介质方程障碍问题自由边界的性质
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-08-30 DOI: 10.1515/acv-2021-0113
Sunghoon Kim, Ki-ahm Lee, Jinwan Park
{"title":"Properties of the free boundaries for the obstacle problem of the porous medium equations","authors":"Sunghoon Kim, Ki-ahm Lee, Jinwan Park","doi":"10.1515/acv-2021-0113","DOIUrl":"https://doi.org/10.1515/acv-2021-0113","url":null,"abstract":"Abstract In this paper, we study the existence and interior W 2 , p {W^{2,p}} -regularity of the solution, and the regularity of the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} to the obstacle problem of the porous medium equation, u t = Δ ⁢ u m {u_{t}=Delta u^{m}} ( m > 1 {m>1} ) with the obstacle function ϕ. The penalization method is applied to have the existence and interior regularity. To deal with the interaction between two free boundaries ∂ ⁡ { u > ϕ } {partial{u>phi}} and ∂ ⁡ { u > 0 } {partial{u>0}} , we consider two cases on the initial data which make the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} separate from the free boundary ∂ ⁡ { u > 0 } {partial{u>0}} . Then the problem is converted into the obstacle problem for a fully nonlinear operator. Hence, the C 1 {C^{1}} -regularity of the free boundary ∂ ⁡ { u > ϕ } {partial{u>phi}} is obtained by the regularity theory of a class of obstacle problems for the general fully nonlinear operator.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47653952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On functions of bounded β-dimensional mean oscillation 关于有界β维平均振荡的函数
IF 1.7 3区 数学
Advances in Calculus of Variations Pub Date : 2022-07-14 DOI: 10.1515/acv-2022-0084
You-Wei Chen, Daniel Spector
{"title":"On functions of bounded β-dimensional mean oscillation","authors":"You-Wei Chen, Daniel Spector","doi":"10.1515/acv-2022-0084","DOIUrl":"https://doi.org/10.1515/acv-2022-0084","url":null,"abstract":"Abstract In this paper, we define a notion of β-dimensional mean oscillation of functions u : Q 0 ⊂ ℝ d → ℝ {u:Q_{0}subsetmathbb{R}^{d}tomathbb{R}} which are integrable on β-dimensional subsets of the cube Q 0 {Q_{0}} : ∥ u ∥ BMO β ⁢ ( Q 0 ) := sup Q ⊂ Q 0 ⁡ inf c ∈ ℝ ⁡ 1 l ⁢ ( Q ) β ⁢ ∫ Q | u - c | ⁢ 𝑑 ℋ ∞ β , displaystyle|u|_{mathrm{BMO}^{beta}(Q_{0})}vcentcolon=sup_{Qsubset Q_{% 0}}inf_{cinmathbb{R}}frac{1}{l(Q)^{beta}}int_{Q}|u-c|,dmathcal{H}^{% beta}_{infty}, where the supremum is taken over all finite subcubes Q parallel to Q 0 {Q_{0}} , l ⁢ ( Q ) {l(Q)} is the length of the side of the cube Q, and ℋ ∞ β {mathcal{H}^{beta}_{infty}} is the Hausdorff content. In the case β = d {beta=d} we show this definition is equivalent to the classical notion of John and Nirenberg, while our main result is that for every β ∈ ( 0 , d ] {betain(0,d]} one has a dimensionally appropriate analogue of the John–Nirenberg inequality for functions with bounded β-dimensional mean oscillation: There exist constants c , C > 0 {c,C>0} such that ℋ ∞ β ⁢ ( { x ∈ Q : | u ⁢ ( x ) - c Q | > t } ) ≤ C ⁢ l ⁢ ( Q ) β ⁢ exp ⁡ ( - c ⁢ t ∥ u ∥ BMO β ⁢ ( Q 0 ) ) displaystylemathcal{H}^{beta}_{infty}({xin Q:|u(x)-c_{Q}|>t})leq Cl(Q)% ^{beta}expbiggl{(}-frac{ct}{|u|_{mathrm{BMO}^{beta}(Q_{0})}}biggr{)} for every t > 0 {t>0} , u ∈ BMO β ⁢ ( Q 0 ) {uinmathrm{BMO}^{beta}(Q_{0})} , Q ⊂ Q 0 {Qsubset Q_{0}} , and suitable c Q ∈ ℝ {c_{Q}inmathbb{R}} . Our proof relies on the establishment of capacitary analogues of standard results in integration theory that may be of independent interest.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44010899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信