On functions of bounded β-dimensional mean oscillation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
You-Wei Chen, Daniel Spector
{"title":"On functions of bounded β-dimensional mean oscillation","authors":"You-Wei Chen, Daniel Spector","doi":"10.1515/acv-2022-0084","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define a notion of β-dimensional mean oscillation of functions u : Q 0 ⊂ ℝ d → ℝ {u:Q_{0}\\subset\\mathbb{R}^{d}\\to\\mathbb{R}} which are integrable on β-dimensional subsets of the cube Q 0 {Q_{0}} : ∥ u ∥ BMO β ⁢ ( Q 0 ) := sup Q ⊂ Q 0 ⁡ inf c ∈ ℝ ⁡ 1 l ⁢ ( Q ) β ⁢ ∫ Q | u - c | ⁢ 𝑑 ℋ ∞ β , \\displaystyle\\|u\\|_{\\mathrm{BMO}^{\\beta}(Q_{0})}\\vcentcolon=\\sup_{Q\\subset Q_{% 0}}\\inf_{c\\in\\mathbb{R}}\\frac{1}{l(Q)^{\\beta}}\\int_{Q}|u-c|\\,d\\mathcal{H}^{% \\beta}_{\\infty}, where the supremum is taken over all finite subcubes Q parallel to Q 0 {Q_{0}} , l ⁢ ( Q ) {l(Q)} is the length of the side of the cube Q, and ℋ ∞ β {\\mathcal{H}^{\\beta}_{\\infty}} is the Hausdorff content. In the case β = d {\\beta=d} we show this definition is equivalent to the classical notion of John and Nirenberg, while our main result is that for every β ∈ ( 0 , d ] {\\beta\\in(0,d]} one has a dimensionally appropriate analogue of the John–Nirenberg inequality for functions with bounded β-dimensional mean oscillation: There exist constants c , C > 0 {c,C>0} such that ℋ ∞ β ⁢ ( { x ∈ Q : | u ⁢ ( x ) - c Q | > t } ) ≤ C ⁢ l ⁢ ( Q ) β ⁢ exp ⁡ ( - c ⁢ t ∥ u ∥ BMO β ⁢ ( Q 0 ) ) \\displaystyle\\mathcal{H}^{\\beta}_{\\infty}(\\{x\\in Q:|u(x)-c_{Q}|>t\\})\\leq Cl(Q)% ^{\\beta}\\exp\\biggl{(}-\\frac{ct}{\\|u\\|_{\\mathrm{BMO}^{\\beta}(Q_{0})}}\\biggr{)} for every t > 0 {t>0} , u ∈ BMO β ⁢ ( Q 0 ) {u\\in\\mathrm{BMO}^{\\beta}(Q_{0})} , Q ⊂ Q 0 {Q\\subset Q_{0}} , and suitable c Q ∈ ℝ {c_{Q}\\in\\mathbb{R}} . Our proof relies on the establishment of capacitary analogues of standard results in integration theory that may be of independent interest.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper, we define a notion of β-dimensional mean oscillation of functions u : Q 0 ⊂ ℝ d → ℝ {u:Q_{0}\subset\mathbb{R}^{d}\to\mathbb{R}} which are integrable on β-dimensional subsets of the cube Q 0 {Q_{0}} : ∥ u ∥ BMO β ⁢ ( Q 0 ) := sup Q ⊂ Q 0 ⁡ inf c ∈ ℝ ⁡ 1 l ⁢ ( Q ) β ⁢ ∫ Q | u - c | ⁢ 𝑑 ℋ ∞ β , \displaystyle\|u\|_{\mathrm{BMO}^{\beta}(Q_{0})}\vcentcolon=\sup_{Q\subset Q_{% 0}}\inf_{c\in\mathbb{R}}\frac{1}{l(Q)^{\beta}}\int_{Q}|u-c|\,d\mathcal{H}^{% \beta}_{\infty}, where the supremum is taken over all finite subcubes Q parallel to Q 0 {Q_{0}} , l ⁢ ( Q ) {l(Q)} is the length of the side of the cube Q, and ℋ ∞ β {\mathcal{H}^{\beta}_{\infty}} is the Hausdorff content. In the case β = d {\beta=d} we show this definition is equivalent to the classical notion of John and Nirenberg, while our main result is that for every β ∈ ( 0 , d ] {\beta\in(0,d]} one has a dimensionally appropriate analogue of the John–Nirenberg inequality for functions with bounded β-dimensional mean oscillation: There exist constants c , C > 0 {c,C>0} such that ℋ ∞ β ⁢ ( { x ∈ Q : | u ⁢ ( x ) - c Q | > t } ) ≤ C ⁢ l ⁢ ( Q ) β ⁢ exp ⁡ ( - c ⁢ t ∥ u ∥ BMO β ⁢ ( Q 0 ) ) \displaystyle\mathcal{H}^{\beta}_{\infty}(\{x\in Q:|u(x)-c_{Q}|>t\})\leq Cl(Q)% ^{\beta}\exp\biggl{(}-\frac{ct}{\|u\|_{\mathrm{BMO}^{\beta}(Q_{0})}}\biggr{)} for every t > 0 {t>0} , u ∈ BMO β ⁢ ( Q 0 ) {u\in\mathrm{BMO}^{\beta}(Q_{0})} , Q ⊂ Q 0 {Q\subset Q_{0}} , and suitable c Q ∈ ℝ {c_{Q}\in\mathbb{R}} . Our proof relies on the establishment of capacitary analogues of standard results in integration theory that may be of independent interest.
关于有界β维平均振荡的函数
在本文中,我们定义了函数u: q0∧∈d→∈{u: q_{0}\子集\mathbb{R}^{d}\到\mathbb{R}}的β维平均振荡的概念,该函数在立方q0 {q_{0}}的β维子集上可积:∥u∥蒙特利尔银行β⁢(Q 0): =一口Q⊂Q 0⁡正c∈ℝ⁡1 l⁢(Q)β⁢∫问| u - c |⁢𝑑ℋ∞β,u \ \ displaystyle \ | | _ {\ mathrm{蒙特利尔银行}^{\β}(Q_ {0})} \ vcentcolon = \ sup_{问\子集Q_ {% 0}} \ inf_ {c \ \ mathbb {R}} \压裂{1}{l (Q) ^{\β}}\ int_ {Q} |你| \,d \ mathcal {H} ^{% \β}_ {\ infty},的上确界接管所有有限平行subcubes Q Q 0 {Q_ {0}}, l⁢(Q) {l (Q)}的长度是立方体的边问,和ℋ∞β{\ mathcal {H} ^{\β}_ {\ infty}}是豪斯多夫的内容。在β =d {\ β =d}的情况下,我们证明了这个定义等价于John和Nirenberg的经典概念,而我们的主要结果是,对于每一个β∈(0,d] {\ β \ In (0,d]},对于具有有界β维平均振荡的函数,有一个维度适当的John - Nirenberg不等式的类比:存在常数c, c >0 {c, c >0}使得h∞β¹({x∈Q):Q | |⁢u (x) - c > t})≤c⁢l⁢(Q)β⁢exp⁡(t - c⁢∥u∥蒙特利尔银行β⁢(Q 0)) \ displaystyle \ mathcal {H} ^{\β}_ {\ infty} (\ {x \问:| u (x) -c_ {Q} | > t \}) \ leq Cl (Q) % ^{β\}\ exp \ biggl{(} - \压裂{ct} {u \ \ | | _ {\ mathrm{蒙特利尔银行}^{\β}(Q_ {0})}} \ biggr每个t > 0 {)} {t > 0}, u∈蒙特利尔银行β⁢(Q 0) {u \ \ mathrm{蒙特利尔银行}^{\β}(Q_ {0})}, Q⊂Q 0{问\子集Q_{0}},和合适的c问∈ℝ{c_ {Q} \中\ mathbb {R}}。我们的证明依赖于积分理论中标准结果的电容类似物的建立,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信