与框架涡度相关的分裂特殊拉格朗日定标

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Salvai
{"title":"与框架涡度相关的分裂特殊拉格朗日定标","authors":"M. Salvai","doi":"10.1515/acv-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract Let M be an oriented three-dimensional Riemannian manifold. We define a notion of vorticity of local sections of the bundle SO ⁢ ( M ) → M {\\mathrm{SO}(M)\\rightarrow M} of all its positively oriented orthonormal tangent frames. When M is a space form, we relate the concept to a suitable invariant split pseudo-Riemannian metric on Iso o ⁢ ( M ) ≅ SO ⁢ ( M ) {\\mathrm{Iso}_{o}(M)\\cong\\mathrm{SO}(M)} : A local section has positive vorticity if and only if it determines a space-like submanifold. In the Euclidean case we find explicit homologically volume maximizing sections using a split special Lagrangian calibration. We introduce the concept of optimal frame vorticity and give an optimal screwed global section for the three-sphere. We prove that it is also homologically volume maximizing (now using a common one-point split calibration). Besides, we show that no optimal section can exist in the Euclidean and hyperbolic cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A split special Lagrangian calibration associated with frame vorticity\",\"authors\":\"M. Salvai\",\"doi\":\"10.1515/acv-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let M be an oriented three-dimensional Riemannian manifold. We define a notion of vorticity of local sections of the bundle SO ⁢ ( M ) → M {\\\\mathrm{SO}(M)\\\\rightarrow M} of all its positively oriented orthonormal tangent frames. When M is a space form, we relate the concept to a suitable invariant split pseudo-Riemannian metric on Iso o ⁢ ( M ) ≅ SO ⁢ ( M ) {\\\\mathrm{Iso}_{o}(M)\\\\cong\\\\mathrm{SO}(M)} : A local section has positive vorticity if and only if it determines a space-like submanifold. In the Euclidean case we find explicit homologically volume maximizing sections using a split special Lagrangian calibration. We introduce the concept of optimal frame vorticity and give an optimal screwed global section for the three-sphere. We prove that it is also homologically volume maximizing (now using a common one-point split calibration). Besides, we show that no optimal section can exist in the Euclidean and hyperbolic cases.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要设M是一个有向的三维黎曼流形。我们定义了SO(M)丛局部截面涡度的一个概念→ M{\mathrm{SO}(M)\rightarrow M}的所有正定向正交切线框架。当M是一个空间形式时,我们将这个概念与Isoo(M)ŞSO(M)上一个合适的不变分裂伪黎曼度量联系起来{Iso}_{o} (M)\cong\mathrm{SO}(M)}:局部截面具有正涡度当且仅当它确定了类空间子流形。在欧几里得的情况下,我们使用分裂的特殊拉格朗日校准找到显式同源体积最大化截面。我们引入了最优框架涡度的概念,并给出了三球面的最优螺旋全局截面。我们证明了它也是同源的体积最大化(现在使用通用的一点分割校准)。此外,我们还证明了在欧氏和双曲情况下不存在最优截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A split special Lagrangian calibration associated with frame vorticity
Abstract Let M be an oriented three-dimensional Riemannian manifold. We define a notion of vorticity of local sections of the bundle SO ⁢ ( M ) → M {\mathrm{SO}(M)\rightarrow M} of all its positively oriented orthonormal tangent frames. When M is a space form, we relate the concept to a suitable invariant split pseudo-Riemannian metric on Iso o ⁢ ( M ) ≅ SO ⁢ ( M ) {\mathrm{Iso}_{o}(M)\cong\mathrm{SO}(M)} : A local section has positive vorticity if and only if it determines a space-like submanifold. In the Euclidean case we find explicit homologically volume maximizing sections using a split special Lagrangian calibration. We introduce the concept of optimal frame vorticity and give an optimal screwed global section for the three-sphere. We prove that it is also homologically volume maximizing (now using a common one-point split calibration). Besides, we show that no optimal section can exist in the Euclidean and hyperbolic cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信