{"title":"退化粘性的双线性Hamilton–Jacobi方程解的极限","authors":"Jian-lin Zhang","doi":"10.1515/acv-2022-0108","DOIUrl":null,"url":null,"abstract":"Abstract In the paper we prove the convergence of viscosity solutions u λ {u_{\\lambda}} as λ → 0 + {\\lambda\\rightarrow 0_{+}} for the parametrized degenerate viscous Hamilton–Jacobi equation H ( x , d x u , λ u ) = α ( x ) Δ u , α ( x ) ≥ 0 , x ∈ 𝕋 n H(x,d_{x}u,\\lambda u)=\\alpha(x)\\Delta u,\\quad\\alpha(x)\\geq 0,\\quad x\\in\\mathbb% {T}^{n} under suitable convex and monotonic conditions on H : T * M × ℝ → ℝ {H:T^{*}M\\times\\mathbb{R}\\rightarrow\\mathbb{R}} . Such a limit can be characterized in terms of stochastic Mather measures associated with the critical equation H ( x , d x u , 0 ) = α ( x ) Δ u . H(x,d_{x}u,0)=\\alpha(x)\\Delta u.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limit of solutions for semilinear Hamilton–Jacobi equations with degenerate viscosity\",\"authors\":\"Jian-lin Zhang\",\"doi\":\"10.1515/acv-2022-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the paper we prove the convergence of viscosity solutions u λ {u_{\\\\lambda}} as λ → 0 + {\\\\lambda\\\\rightarrow 0_{+}} for the parametrized degenerate viscous Hamilton–Jacobi equation H ( x , d x u , λ u ) = α ( x ) Δ u , α ( x ) ≥ 0 , x ∈ 𝕋 n H(x,d_{x}u,\\\\lambda u)=\\\\alpha(x)\\\\Delta u,\\\\quad\\\\alpha(x)\\\\geq 0,\\\\quad x\\\\in\\\\mathbb% {T}^{n} under suitable convex and monotonic conditions on H : T * M × ℝ → ℝ {H:T^{*}M\\\\times\\\\mathbb{R}\\\\rightarrow\\\\mathbb{R}} . Such a limit can be characterized in terms of stochastic Mather measures associated with the critical equation H ( x , d x u , 0 ) = α ( x ) Δ u . H(x,d_{x}u,0)=\\\\alpha(x)\\\\Delta u.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0108\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
摘要本文证明了黏性解u λ的收敛性 {我们……{\lambda}} 当λ→0 + {\lambda\rightarrow 0_{+}} 对于参数化简并粘性Hamilton-Jacobi方程H∑(x,d x∑u, λ∑u) = α∑(x)∑Δ∑u, α∑(x)≥0,x∈ndh (x,d_{x}你,\lambda u)=\alpha(x)\Delta 你,\quad\alpha(x)\geq 0,\quad x\in\mathbb% {T}^{n} under suitable convex and monotonic conditions on H : T * M × ℝ → ℝ {H:T^{*}M\times\mathbb{R}\rightarrow\mathbb{R}} . Such a limit can be characterized in terms of stochastic Mather measures associated with the critical equation H ( x , d x u , 0 ) = α ( x ) Δ u . H(x,d_{x}u,0)=\alpha(x)\Delta u.
Limit of solutions for semilinear Hamilton–Jacobi equations with degenerate viscosity
Abstract In the paper we prove the convergence of viscosity solutions u λ {u_{\lambda}} as λ → 0 + {\lambda\rightarrow 0_{+}} for the parametrized degenerate viscous Hamilton–Jacobi equation H ( x , d x u , λ u ) = α ( x ) Δ u , α ( x ) ≥ 0 , x ∈ 𝕋 n H(x,d_{x}u,\lambda u)=\alpha(x)\Delta u,\quad\alpha(x)\geq 0,\quad x\in\mathbb% {T}^{n} under suitable convex and monotonic conditions on H : T * M × ℝ → ℝ {H:T^{*}M\times\mathbb{R}\rightarrow\mathbb{R}} . Such a limit can be characterized in terms of stochastic Mather measures associated with the critical equation H ( x , d x u , 0 ) = α ( x ) Δ u . H(x,d_{x}u,0)=\alpha(x)\Delta u.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.