关于Hilbert第19问题中所有极值的Hölder正则性

IF 1.3 3区 数学 Q1 MATHEMATICS
F. Tomi, A. Tromba
{"title":"关于Hilbert第19问题中所有极值的Hölder正则性","authors":"F. Tomi, A. Tromba","doi":"10.1515/acv-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ ℝ n {\\Omega\\subset\\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:\\Omega\\times\\mathbb{R}^{nN}\\to\\mathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {\\Omega\\times\\mathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nN\\times nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{\\alpha\\beta})\\in C^{0}(\\Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{\\alpha\\beta}(x)\\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}=A^{ji}_{\\beta\\alpha}(x)% \\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}\\geq\\lambda\\lvert\\xi\\rvert^{2},\\quad\\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \\displaystyle\\lim_{\\lvert p\\rvert\\to\\infty}\\frac{1}{\\lvert p\\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \\displaystyle{-}C_{0}+c_{0}\\lvert p\\rvert^{2}\\leq F(x,p)\\leq C_{0}(1+\\lvert p% \\rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \\displaystyle\\lvert F_{p}(x,p)-F_{p}(x,q)\\rvert\\leq C_{0}\\lvert p-q\\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \\displaystyle\\langle F_{p}(x,p)-F_{p}(x,q),p-q\\rangle\\geq c_{0}\\lvert p-q% \\rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\\int_{\\Omega}F(x,Du(x))\\,dx+\\int_{\\Omega}G(x,u)\\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\\cdot\\,)\\in C^{1}(\\mathbb{R}^{N})} for each x ∈ Ω {x\\in\\Omega} , G ⁢ ( ⋅ , u ) {G(\\,\\cdot\\,,u)} is measurable for each u ∈ ℝ N {u\\in\\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \\lvert G_{u}(x,u)\\rvert\\leq C_{0}(1+\\lvert u\\rvert^{s}) with s < n + 2 n - 2 {s<\\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\\in W^{1,2}(\\Omega,\\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \\sum_{\\alpha}\\frac{\\partial}{\\partial x^{\\alpha}}F_{p^{i}_{\\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\\quad i=1,\\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hölder regularity of all extrema in Hilbert’s 19th Problem\",\"authors\":\"F. Tomi, A. Tromba\",\"doi\":\"10.1515/acv-2021-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Ω ⊂ ℝ n {\\\\Omega\\\\subset\\\\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:\\\\Omega\\\\times\\\\mathbb{R}^{nN}\\\\to\\\\mathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {\\\\Omega\\\\times\\\\mathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nN\\\\times nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{\\\\alpha\\\\beta})\\\\in C^{0}(\\\\Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{\\\\alpha\\\\beta}(x)\\\\xi^{i}_{\\\\alpha}\\\\xi^{j}_{\\\\beta}=A^{ji}_{\\\\beta\\\\alpha}(x)% \\\\xi^{i}_{\\\\alpha}\\\\xi^{j}_{\\\\beta}\\\\geq\\\\lambda\\\\lvert\\\\xi\\\\rvert^{2},\\\\quad\\\\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \\\\displaystyle\\\\lim_{\\\\lvert p\\\\rvert\\\\to\\\\infty}\\\\frac{1}{\\\\lvert p\\\\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \\\\displaystyle{-}C_{0}+c_{0}\\\\lvert p\\\\rvert^{2}\\\\leq F(x,p)\\\\leq C_{0}(1+\\\\lvert p% \\\\rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \\\\displaystyle\\\\lvert F_{p}(x,p)-F_{p}(x,q)\\\\rvert\\\\leq C_{0}\\\\lvert p-q\\\\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \\\\displaystyle\\\\langle F_{p}(x,p)-F_{p}(x,q),p-q\\\\rangle\\\\geq c_{0}\\\\lvert p-q% \\\\rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\\\\int_{\\\\Omega}F(x,Du(x))\\\\,dx+\\\\int_{\\\\Omega}G(x,u)\\\\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\\\\cdot\\\\,)\\\\in C^{1}(\\\\mathbb{R}^{N})} for each x ∈ Ω {x\\\\in\\\\Omega} , G ⁢ ( ⋅ , u ) {G(\\\\,\\\\cdot\\\\,,u)} is measurable for each u ∈ ℝ N {u\\\\in\\\\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \\\\lvert G_{u}(x,u)\\\\rvert\\\\leq C_{0}(1+\\\\lvert u\\\\rvert^{s}) with s < n + 2 n - 2 {s<\\\\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\\\\in W^{1,2}(\\\\Omega,\\\\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \\\\sum_{\\\\alpha}\\\\frac{\\\\partial}{\\\\partial x^{\\\\alpha}}F_{p^{i}_{\\\\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\\\\quad i=1,\\\\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2021-0089\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2021-0089","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Ω∧∈n {\Omega\subset\mathbb{R}^{n}} 是C {c ^{1}} 光滑紧致域。更进一步,设F: Ω x, n, n,→ {f:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F∑(x, p) {F(x,p)} ,是C 0 {c ^{0}} ,对p可导,对F可导,p = dp∑F {f_{p}:= d_{p}f} 在Ω上连续的 {\Omega\times\mathbb{R}^{nN}} F在p中是严格凸的,考虑n n × n n {nN\times nN} 矩阵A = (A α _ β i _ j)∈c0 _ (Ω) {a =(a ^{{ij}}_{\alpha\beta})\in c ^{0}(\Omega)} 满足(0.1)A α减去β i减去j减去(x)减去ξ α i减去ξ β j = A β减去α j减去i减去(x)减去ξ α i减去ξ β j≥λ减去| ξ | 2, λ > 0。a ^{ij}_{\alpha\beta}(x)\xi^{I}_{\alpha}\xi^{j}_{\beta}= a ^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ⁢ ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hölder regularity of all extrema in Hilbert’s 19th Problem
Abstract Let Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n ⁢ N → ℝ {F:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F ⁢ ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p ⁢ F {F_{p}:=D_{p}F} continuous on Ω × ℝ n ⁢ N {\Omega\times\mathbb{R}^{nN}} and F strictly convex in p. Consider an n ⁢ N × n ⁢ N {nN\times nN} matrix A = ( A α ⁢ β i ⁢ j ) ∈ C 0 ⁢ ( Ω ) {A=(A^{{ij}}_{\alpha\beta})\in C^{0}(\Omega)} satisfying (0.1) A α ⁢ β i ⁢ j ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j = A β ⁢ α j ⁢ i ⁢ ( x ) ⁢ ξ α i ⁢ ξ β j ≥ λ ⁢ | ξ | 2 , λ > 0 . A^{ij}_{\alpha\beta}(x)\xi^{i}_{\alpha}\xi^{j}_{\beta}=A^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ ⁡ 1 | p | ⁢ ( D p ⁢ F ⁢ ( x , p ) - A ⁢ ( x ) ⁢ p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 ⁢ | p | 2 ≤ F ⁢ ( x , p ) ≤ C 0 ⁢ ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ⁢ ( x , p ) - F p ⁢ ( x , q ) | ≤ C 0 ⁢ | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ⁢ ( x , p ) - F p ⁢ ( x , q ) , p - q 〉 ≥ c 0 ⁢ | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ⁢ ( u ) := ∫ Ω F ⁢ ( x , D ⁢ u ⁢ ( x ) ) ⁢ 𝑑 x + ∫ Ω G ⁢ ( x , u ) ⁢ 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ⁢ ( x , ⋅ ) ∈ C 1 ⁢ ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ⁢ ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ⁢ ( x , u ) | ≤ C 0 ⁢ ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s<\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ⁢ ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ ⁡ x α ⁢ F p α i ⁢ ( x , D ⁢ u ) = G u i ⁢ ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信