Francesco Della Pietra, C. Nitsch, Francescantonio Oliva, C. Trombetti
{"title":"On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1","authors":"Francesco Della Pietra, C. Nitsch, Francescantonio Oliva, C. Trombetti","doi":"10.1515/acv-2021-0085","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the Γ-limit, as p → 1 {p\\to 1} , of the functional J p ( u ) = ∫ Ω | ∇ u | p + β ∫ ∂ Ω | u | p ∫ Ω | u | p , J_{p}(u)=\\frac{\\int_{\\Omega}\\lvert\\nabla u\\rvert^{p}+\\beta\\int_{\\partial\\Omega% }\\lvert u\\rvert^{p}}{\\int_{\\Omega}\\lvert u\\rvert^{p}}, where Ω is a smooth bounded open set in ℝ N {\\mathbb{R}^{N}} , p > 1 {p>1} and β is a real number. Among our results, for β > - 1 {\\beta>-1} , we derive an isoperimetric inequality for Λ ( Ω , β ) = inf u ∈ BV ( Ω ) , u ≢ 0 | D u | ( Ω ) + min ( β , 1 ) ∫ ∂ Ω | u | ∫ Ω | u | \\Lambda(\\Omega,\\beta)=\\inf_{u\\in\\operatorname{BV}(\\Omega),\\,u\\not\\equiv 0}% \\frac{\\lvert Du\\rvert(\\Omega)+\\min(\\beta,1)\\int_{\\partial\\Omega}\\lvert u\\rvert% }{\\int_{\\Omega}\\lvert u\\rvert} which is the limit as p → 1 + {p\\to 1^{+}} of λ ( Ω , p , β ) = min u ∈ W 1 , p ( Ω ) J p ( u ) {\\lambda(\\Omega,p,\\beta)=\\min_{u\\in W^{1,p}(\\Omega)}J_{p}(u)} . We show that among all bounded and smooth open sets with given volume, the ball maximizes Λ ( Ω , β ) {\\Lambda(\\Omega,\\beta)} when β ∈ ( - 1 , 0 ) {\\beta\\in(-1,0)} and minimizes Λ ( Ω , β ) {\\Lambda(\\Omega,\\beta)} when β ∈ [ 0 , ∞ ) {\\beta\\in[0,\\infty)} .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2021-0085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this paper, we study the Γ-limit, as p → 1 {p\to 1} , of the functional J p ( u ) = ∫ Ω | ∇ u | p + β ∫ ∂ Ω | u | p ∫ Ω | u | p , J_{p}(u)=\frac{\int_{\Omega}\lvert\nabla u\rvert^{p}+\beta\int_{\partial\Omega% }\lvert u\rvert^{p}}{\int_{\Omega}\lvert u\rvert^{p}}, where Ω is a smooth bounded open set in ℝ N {\mathbb{R}^{N}} , p > 1 {p>1} and β is a real number. Among our results, for β > - 1 {\beta>-1} , we derive an isoperimetric inequality for Λ ( Ω , β ) = inf u ∈ BV ( Ω ) , u ≢ 0 | D u | ( Ω ) + min ( β , 1 ) ∫ ∂ Ω | u | ∫ Ω | u | \Lambda(\Omega,\beta)=\inf_{u\in\operatorname{BV}(\Omega),\,u\not\equiv 0}% \frac{\lvert Du\rvert(\Omega)+\min(\beta,1)\int_{\partial\Omega}\lvert u\rvert% }{\int_{\Omega}\lvert u\rvert} which is the limit as p → 1 + {p\to 1^{+}} of λ ( Ω , p , β ) = min u ∈ W 1 , p ( Ω ) J p ( u ) {\lambda(\Omega,p,\beta)=\min_{u\in W^{1,p}(\Omega)}J_{p}(u)} . We show that among all bounded and smooth open sets with given volume, the ball maximizes Λ ( Ω , β ) {\Lambda(\Omega,\beta)} when β ∈ ( - 1 , 0 ) {\beta\in(-1,0)} and minimizes Λ ( Ω , β ) {\Lambda(\Omega,\beta)} when β ∈ [ 0 , ∞ ) {\beta\in[0,\infty)} .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.