Characterization of the subdifferential and minimizers for the anisotropic p-capacity

IF 1.3 3区 数学 Q1 MATHEMATICS
Esther Cabezas-Rivas, Salvador Moll, Marcos Solera
{"title":"Characterization of the subdifferential and minimizers for the anisotropic p-capacity","authors":"Esther Cabezas-Rivas, Salvador Moll, Marcos Solera","doi":"10.1515/acv-2023-0057","DOIUrl":null,"url":null,"abstract":"We obtain existence of minimizers for the <jats:italic>p</jats:italic>-capacity functional defined with respect to a centrally symmetric anisotropy for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_0885.png\" /> <jats:tex-math>{1&lt;p&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including the case of a crystalline norm in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1021.png\" /> <jats:tex-math>{\\mathbb{R}^{N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mover accent=\"true\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1019.png\" /> <jats:tex-math>{\\mathbb{R}^{N}\\setminus\\overline{\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain existence of minimizers for the p-capacity functional defined with respect to a centrally symmetric anisotropy for 1 < p < {1<p<\infty} , including the case of a crystalline norm in N {\mathbb{R}^{N}} . The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form N Ω ¯ {\mathbb{R}^{N}\setminus\overline{\Omega}} under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.
各向异性 p 能力的次微分和最小值的特征
我们得到了针对 1 < p < ∞ {1<p<\infty} 的中心对称各向异性定义的 p 容量函数的最小值存在性,包括ℝ N {\mathbb{R}^{N}} 中的结晶规范。 包括ℝ N {\mathbb{R}^{N}} 中的晶体规范的情况。 .这个结果是通过相应子微分的特征得到的,它适用于形式为 ℝ N ∖ Ω ¯\ {mathbb{R}^{N}\setminus\overline\{Omega}} 的无界域,前提是温和的正则性假设(Lipschitz-连续边界)以及对有界域 Ω 没有凸性要求。如果我们进一步假设一个内部球条件(Wulff 形状扮演球的角色),那么任何最小化都可以证明是 Lipschitz 连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信