Esther Cabezas-Rivas, Salvador Moll, Marcos Solera
{"title":"Characterization of the subdifferential and minimizers for the anisotropic p-capacity","authors":"Esther Cabezas-Rivas, Salvador Moll, Marcos Solera","doi":"10.1515/acv-2023-0057","DOIUrl":null,"url":null,"abstract":"We obtain existence of minimizers for the <jats:italic>p</jats:italic>-capacity functional defined with respect to a centrally symmetric anisotropy for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_0885.png\" /> <jats:tex-math>{1<p<\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including the case of a crystalline norm in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1021.png\" /> <jats:tex-math>{\\mathbb{R}^{N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>∖</m:mo> <m:mover accent=\"true\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0057_eq_1019.png\" /> <jats:tex-math>{\\mathbb{R}^{N}\\setminus\\overline{\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain existence of minimizers for the p-capacity functional defined with respect to a centrally symmetric anisotropy for 1<p<∞{1<p<\infty}, including the case of a crystalline norm in ℝN{\mathbb{R}^{N}}. The result is obtained by a characterization of the corresponding subdifferential and it applies to unbounded domains of the form ℝN∖Ω¯{\mathbb{R}^{N}\setminus\overline{\Omega}} under mild regularity assumptions (Lipschitz-continuous boundary) and no convexity requirements on the bounded domain Ω. If we further assume an interior ball condition (where the Wulff shape plays the role of a ball), then any minimizer is shown to be Lipschitz continuous.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.