{"title":"非局部 BV 函数和保真度为 L 1 的去噪模型","authors":"Konstantinos Bessas, Giorgio Stefani","doi":"10.1515/acv-2023-0082","DOIUrl":null,"url":null,"abstract":"We study a general total variation denoising model with weighted <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel <jats:italic>K</jats:italic>, and the approximation term is given by the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> norm with respect to a non-singular measure with positively lower-bounded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0328.png\" /> <jats:tex-math>{L^{\\infty}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> density. We provide a detailed analysis of the space of non-local <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0210.png\" /> <jats:tex-math>\\mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions with finite total <jats:italic>K</jats:italic>-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the <jats:italic>K</jats:italic>-variation and the associated <jats:italic>K</jats:italic>-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-local BV functions and a denoising model with L 1 fidelity\",\"authors\":\"Konstantinos Bessas, Giorgio Stefani\",\"doi\":\"10.1515/acv-2023-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a general total variation denoising model with weighted <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0082_eq_0326.png\\\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel <jats:italic>K</jats:italic>, and the approximation term is given by the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0082_eq_0326.png\\\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> norm with respect to a non-singular measure with positively lower-bounded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0082_eq_0328.png\\\" /> <jats:tex-math>{L^{\\\\infty}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> density. We provide a detailed analysis of the space of non-local <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0082_eq_0210.png\\\" /> <jats:tex-math>\\\\mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions with finite total <jats:italic>K</jats:italic>-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the <jats:italic>K</jats:italic>-variation and the associated <jats:italic>K</jats:italic>-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0082\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一种具有加权 L 1 {L^{1}}保真度的一般总变异去噪模型,其中正则化项是由合适的(不可积分的)核 K 引起的非局部变异,而逼近项则由相对于具有正下限 L ∞ {L^{infty}} 密度的非邢性度量的 L 1 {L^{1}}规范给出。我们详细分析了具有有限总 K 变量的非局部 BV \mathrm{BV} 函数空间,特别强调了 K 变量和相关 K 周长的紧凑性、Lusin 型估计、Sobolev 嵌入和等周性与单调性。最后,我们将讨论这种非局部设置中的切格集理论,并将其应用于我们模型中保真度的研究。
Non-local BV functions and a denoising model with L 1 fidelity
We study a general total variation denoising model with weighted L1{L^{1}} fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel K, and the approximation term is given by the L1{L^{1}} norm with respect to a non-singular measure with positively lower-bounded L∞{L^{\infty}} density. We provide a detailed analysis of the space of non-local BV\mathrm{BV} functions with finite total K-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the K-variation and the associated K-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.