具有实锥的流形上的奇异 Yamabe 问题

IF 1.3 3区 数学 Q1 MATHEMATICS
Juan Alcon Apaza, Sérgio Almaraz
{"title":"具有实锥的流形上的奇异 Yamabe 问题","authors":"Juan Alcon Apaza, Sérgio Almaraz","doi":"10.1515/acv-2022-0105","DOIUrl":null,"url":null,"abstract":"We study the existence of conformal metrics on noncompact Riemannian manifolds with noncompact boundary, which are complete as metric spaces and have negative constant scalar curvature in the interior and negative constant mean curvature on the boundary. These metrics are constructed on smooth manifolds obtained by removing <jats:italic>d</jats:italic>-dimensional submanifolds from certain <jats:italic>n</jats:italic>-dimensional compact spaces locally modelled on generalized solid cones. We prove the existence of such metrics if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>d</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0105_eq_0720.png\"/> <jats:tex-math>{d&gt;\\frac{n-2}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our main theorem is inspired by the classical results by Aviles–McOwen and Loewner–Nirenberg, known in the literature as the “singular Yamabe problem”.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"33 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A singular Yamabe problem on manifolds with solid cones\",\"authors\":\"Juan Alcon Apaza, Sérgio Almaraz\",\"doi\":\"10.1515/acv-2022-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of conformal metrics on noncompact Riemannian manifolds with noncompact boundary, which are complete as metric spaces and have negative constant scalar curvature in the interior and negative constant mean curvature on the boundary. These metrics are constructed on smooth manifolds obtained by removing <jats:italic>d</jats:italic>-dimensional submanifolds from certain <jats:italic>n</jats:italic>-dimensional compact spaces locally modelled on generalized solid cones. We prove the existence of such metrics if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>d</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2022-0105_eq_0720.png\\\"/> <jats:tex-math>{d&gt;\\\\frac{n-2}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our main theorem is inspired by the classical results by Aviles–McOwen and Loewner–Nirenberg, known in the literature as the “singular Yamabe problem”.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有非紧凑边界的非紧凑黎曼流形上共形度量的存在性,这些度量作为度量空间是完整的,在内部具有负常标量曲率,在边界上具有负常平均曲率。这些度量是在光滑流形上构造的,光滑流形是通过从某些以广义实心圆锥为局部模型的 n 维紧凑空间中移除 d 维子流形而得到的。我们证明了当且仅当 d > n - 2 2 {d>\frac{n-2}{2}} 时这种度量的存在。 .我们的主要定理受 Aviles-McOwen 和 Loewner-Nirenberg 的经典结果启发,在文献中被称为 "奇异 Yamabe 问题"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A singular Yamabe problem on manifolds with solid cones
We study the existence of conformal metrics on noncompact Riemannian manifolds with noncompact boundary, which are complete as metric spaces and have negative constant scalar curvature in the interior and negative constant mean curvature on the boundary. These metrics are constructed on smooth manifolds obtained by removing d-dimensional submanifolds from certain n-dimensional compact spaces locally modelled on generalized solid cones. We prove the existence of such metrics if and only if d > n - 2 2 {d>\frac{n-2}{2}} . Our main theorem is inspired by the classical results by Aviles–McOwen and Loewner–Nirenberg, known in the literature as the “singular Yamabe problem”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信