Non-local BV functions and a denoising model with L 1 fidelity

IF 1.3 3区 数学 Q1 MATHEMATICS
Konstantinos Bessas, Giorgio Stefani
{"title":"Non-local BV functions and a denoising model with L 1 fidelity","authors":"Konstantinos Bessas, Giorgio Stefani","doi":"10.1515/acv-2023-0082","DOIUrl":null,"url":null,"abstract":"We study a general total variation denoising model with weighted <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel <jats:italic>K</jats:italic>, and the approximation term is given by the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0326.png\" /> <jats:tex-math>{L^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> norm with respect to a non-singular measure with positively lower-bounded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0328.png\" /> <jats:tex-math>{L^{\\infty}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> density. We provide a detailed analysis of the space of non-local <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0082_eq_0210.png\" /> <jats:tex-math>\\mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions with finite total <jats:italic>K</jats:italic>-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the <jats:italic>K</jats:italic>-variation and the associated <jats:italic>K</jats:italic>-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a general total variation denoising model with weighted L 1 {L^{1}} fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel K, and the approximation term is given by the L 1 {L^{1}} norm with respect to a non-singular measure with positively lower-bounded L {L^{\infty}} density. We provide a detailed analysis of the space of non-local BV \mathrm{BV} functions with finite total K-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the K-variation and the associated K-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.
非局部 BV 函数和保真度为 L 1 的去噪模型
我们研究了一种具有加权 L 1 {L^{1}}保真度的一般总变异去噪模型,其中正则化项是由合适的(不可积分的)核 K 引起的非局部变异,而逼近项则由相对于具有正下限 L ∞ {L^{infty}} 密度的非邢性度量的 L 1 {L^{1}}规范给出。我们详细分析了具有有限总 K 变量的非局部 BV \mathrm{BV} 函数空间,特别强调了 K 变量和相关 K 周长的紧凑性、Lusin 型估计、Sobolev 嵌入和等周性与单调性。最后,我们将讨论这种非局部设置中的切格集理论,并将其应用于我们模型中保真度的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信