The 2+1-convex hull of a~finite set

IF 1.3 3区 数学 Q1 MATHEMATICS
Pablo Angulo, Carlos García-Gutiérrez
{"title":"The 2+1-convex hull of a~finite set","authors":"Pablo Angulo, Carlos García-Gutiérrez","doi":"10.1515/acv-2023-0077","DOIUrl":null,"url":null,"abstract":"Rank-one convexity is a weak form of convexity related to convex integration and the elusive notion of quasiconvexity, but more amenable both in theory and practice. However, exact algorithms for computing the rank one convex hull of a finite set are only known for some special cases of separate convexity with a finite number of directions. Both inner approximations either with laminates or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>4</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0331.png\" /> <jats:tex-math>{T_{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>’s and outer approximations through polyconvexity are known to be insufficient in general. We study <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⊕</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0351.png\" /> <jats:tex-math>{\\mathbb{R}^{2}\\oplus\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-separately convex hulls of finite sets, which is a special case of rank-one convexity with infinitely many directions in which <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>4</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0331.png\" /> <jats:tex-math>{T_{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>’s are known not to capture the rank one convex hull. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mn>3</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0353.png\" /> <jats:tex-math>{\\mathbb{R}^{3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is identified with a subset of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>×</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0077_eq_0130.png\" /> <jats:tex-math>{2\\times 3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrices, it is known to correspond also to quasiconvexity. We propose new inner and outer approximations built upon systematic use of known results, and prove that they agree. The inner approximation allows to understand better the structure of the rank one convex hull. The outer approximation gives rise to a computational algorithm which, in some cases, computes the hull exactly, and in general builds a sequence that converges to the hull. We use and systematize all previous attempts at computing <jats:italic>D</jats:italic>-convex hulls, and bring new ideas that may help compute general <jats:italic>D</jats:italic>-convex hulls.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rank-one convexity is a weak form of convexity related to convex integration and the elusive notion of quasiconvexity, but more amenable both in theory and practice. However, exact algorithms for computing the rank one convex hull of a finite set are only known for some special cases of separate convexity with a finite number of directions. Both inner approximations either with laminates or T 4 {T_{4}} ’s and outer approximations through polyconvexity are known to be insufficient in general. We study 2 {\mathbb{R}^{2}\oplus\mathbb{R}} -separately convex hulls of finite sets, which is a special case of rank-one convexity with infinitely many directions in which T 4 {T_{4}} ’s are known not to capture the rank one convex hull. When 3 {\mathbb{R}^{3}} is identified with a subset of 2 × 3 {2\times 3} matrices, it is known to correspond also to quasiconvexity. We propose new inner and outer approximations built upon systematic use of known results, and prove that they agree. The inner approximation allows to understand better the structure of the rank one convex hull. The outer approximation gives rise to a computational algorithm which, in some cases, computes the hull exactly, and in general builds a sequence that converges to the hull. We use and systematize all previous attempts at computing D-convex hulls, and bring new ideas that may help compute general D-convex hulls.
无穷集的 2+1 凸体
秩一凸性是凸性的一种弱形式,与凸积分和难以捉摸的准凸性概念有关,但在理论和实践上都更容易理解。然而,计算有限集合的秩一凸壳的精确算法只适用于具有有限方向数的独立凸性的某些特殊情况。无论是使用层状结构或 T 4 {T_{4}} 的内近似,还是通过矩阵的外近似,都需要对有限集合的秩一凸壳进行计算。 的内近似和通过多凸性的外近似在一般情况下都是不够的。我们研究了 ⊕ ℝ 2 ⊕ ℝ {mathbb{R}^{2}\oplus\mathbb{R}} -有限集的分离凸壳,这是具有无限多方向的秩一凸性的一个特例,其中 T 4 {T_{4}} '已知不能捕捉到秩一凸体。当 ℝ 3 {\mathbb{R}^{3}} 与 2 × 3 {2\times 3} 矩阵的子集确定时,已知它也对应于准凸性。我们在系统利用已知结果的基础上提出了新的内近似和外近似,并证明它们是一致的。通过内近似,可以更好地理解秩一凸壳的结构。外近似产生了一种计算算法,在某些情况下,它能精确计算出凸壳,而在一般情况下,它能建立一个收敛到凸壳的序列。我们使用并系统化了以前计算 D- 凸体的所有尝试,并带来了可能有助于计算一般 D- 凸体的新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信