包含一阶项的p-拉普拉斯系统奇异解的对称性和单调性

IF 1.3 3区 数学 Q1 MATHEMATICS
Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi
{"title":"包含一阶项的p-拉普拉斯系统奇异解的对称性和单调性","authors":"Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi","doi":"10.1515/acv-2023-0043","DOIUrl":null,"url":null,"abstract":"We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by <jats:italic>p</jats:italic>-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"23 13","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term\",\"authors\":\"Stefano Biagi, Francesco Esposito, Luigi Montoro, Eugenio Vecchi\",\"doi\":\"10.1515/acv-2023-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by <jats:italic>p</jats:italic>-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"23 13\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0043\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一类由p-拉普拉斯算子驱动且附加非线性一阶项的偏微分方程系统的正奇异解(即具有不可移动的奇异点)。通过谨慎地使用一种新的移动平面方法,我们证明了解的对称性。在标量情况下,结果已经是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term
We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by p-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信