Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Edir Júnior Ferreira Leite, Marcos Montenegro
{"title":"Least energy solutions for affine p-Laplace equations involving subcritical and critical nonlinearities","authors":"Edir Júnior Ferreira Leite, Marcos Montenegro","doi":"10.1515/acv-2022-0050","DOIUrl":null,"url":null,"abstract":"The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine <jats:italic>p</jats:italic>-Laplace nonlocal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>p</m:mi> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0160.png\" /> <jats:tex-math>{\\Delta_{p}^{\\cal A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0140.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> energy <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0108.png\" /> <jats:tex-math>L_{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0128.png\" /> <jats:tex-math>{C^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0333.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and by the comparison <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">ℰ</m:mi> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msubsup> <m:mi>W</m:mi> <m:mn>0</m:mn> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0050_eq_0330.png\" /> <jats:tex-math>{{\\cal E}_{p,\\Omega}(u)\\leq\\|u\\|_{W^{1,p}_{0}(\\Omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> generally strict.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine p-Laplace nonlocal operator Δ p 𝒜 {\Delta_{p}^{\cal A}} , which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math. 386 2021, Article ID 107808] driven by the affine L p {L^{p}} energy p , Ω {{\cal E}_{p,\Omega}} from convex geometry due to [E. Lutwak, D. Yang and G. Zhang, Sharp affine L p L_{p} Sobolev inequalities, J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive C 1 {C^{1}} solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of p , Ω {{\cal E}_{p,\Omega}} and by the comparison p , Ω ( u ) u W 0 1 , p ( Ω ) {{\cal E}_{p,\Omega}(u)\leq\|u\|_{W^{1,p}_{0}(\Omega)}} generally strict.
涉及亚临界和临界非线性的仿射 p-Laplace 方程的最小能量解
本文涉及涉及仿射 p-Laplace 非局部算子 Δ p 𝒜 {\Delta_{p}^{cal A}} 的 Lane-Emden 和 Brezis-Nirenberg 问题。 , which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro, From affine Poincaré inequalities to affine spectral inequalities, Adv. Math.386 2021, Article ID 107808] 由凸几何中的仿射 L p {L^{p}} 能量 ℰ p , Ω {{cal E}_{p,\Omega}} 驱动,归因于 [E. Lutwak, D. Yang.Lutwak, D. Yang and G. Zhang, Sharp affine L p L_{p}. Sobolev 不等式, J. Differential Geom.62 2002, 1, 17-38].我们对最小能量型正 C 1 {C^{1}} 解的存在与不存在特别感兴趣。部分主要困难是由ℰ p , Ω {{cal E}_{p,\Omega}} 的不凸性和比较 ℰ p , Ω ( u ) ≤ ∥ u ∥ W 0 1 , p ( Ω ) {{cal E}_{p,\Omega}(u)\leq\|u\|_{W^{1,p}_{0}(\Omega)}} 一般严格造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信